
MIHICTEPCTBO OCBITII I HAYKI,I YKPAIHI,I
xAP KI B C b Krrfr HAIIr O HAJIb HI4fr B K O H O MI rI ld.Vrfi yHr B E p C Lr r E T

IMBHI CEMEHA KY3HEIIfl

3ATBEPAInBHO
Ha 3aciAaHHi ra$e4pH
iHSopnrarlifiuprx crrcreM.
flporoxor]''lb I sia 22.08.2023 p.

fzuryss 3HaHb

Cneuizurrsicru
OcsirHift pinenr
Ocnirng rporpaMa

eroAr{rrHoi po6oru

ina HEMAIIIKAJIO

IHXEHEPI.fl IIPOTPAMHOI O 3AEE3TIEIIEHHfl

p o 6 oua rporpaMa HaBqa"rrrnoi Ar{cqur.uinn G[HA)

12 "InSoprvraqifini rexnonoriit'
l2l "lruxeHepin nporpaMHoro sa6egne.rennfl tt

nepruufi (6arca.nanpcnrufi)
ttluxeHepir nporpaMnoro gade:ue.reuHfl tt

Craryc Aracquurinu
Moea Br,rKJraAaHHr, HaBqaHH fl. Ta orliuronauHs

Pospo6uur:
K.e.H., npo(fecop

3anigynau xaSeapu
inSoprr,raqift nux cncreM

fapanr rporpaMr.r

o6ontggKoBa

anrrificsna

IpuHa 3OJIOTAPbOBA

,,{uurpo EOHAAPEHKO

Orer OPOJIOB

Xaprcin
2024

fl-;:iii}re

niAnucauo KEII

MINISTRY OF EDUCATION AND SCIENCB OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVBRSITY OF

ECONOMICS

APPROVBD
at the meeting of Information
Systems Department

flpororor Ng 1 eia 22.08.2023 p.

Study programme
Specialty
Study cycle
Study programme

Course status

Language

Developer:
professor

Head of Information
Systems Department

Programme Guarantor

h"-$
'91

K4

onal and

NEMASHKALO

SOFTWARE ENGINEERING
Program of the course

L2 "Information technologies"
l2l ttSoftware engineeringtt
nepruufi (6arca.rranpcrrcufi)
t tluxeuepin rrporpaMnoro ga6egue.reHHtr t t

mandatory
English

Iryna Zolotaryova

Dmvtro Bondarenko

Oleh Frolov

Kharkiv
2024

digital signature

3

INTRODUCTION

The course is devoted to studying methods and tools for managing software

projects (work planning and resource management), expert evaluation of intermediate

development results during the life cycle (LC) processes, risk assessment of building

a software system, and the quality achieved for it. This discipline uses standards

governing the processes of the LC, requirements engineering, testing, and quality

assurance by checking the indicators on the LC processes and the final product to

evaluate them. The course covers theoretical and practical issues of building various

software systems to perform software development tasks. The course will be useful

for future managers and executors of information systems development projects,

primarily in organizing software product design processes using modern tools.

The course "Software Engineering" is studied by applicants for the specialty

"Software Engineering" of all forms of study in the third year during the sixth

semester.

The purpose of teaching the course "Software Engineering" is to study

methodologies for the development of information systems software; application of

the UML (Universal Modeling Language) language for modeling and designing

information systems; application of software tools to expand and deepen theoretical

knowledge and applied skills on basic concepts and definitions in the field of

software quality assurance, acquisition of skills in the use of modern information

technologies for

Formation of systematic understanding:

Modern concepts, principles, methodologies, and technologies of software

development.

Life cycle (LC) of information systems software systems.

Best practices and standards of software engineering (SE) used in the IT

industry.

Mastering skills:

Design, development, testing, and implementation of software.

Use of modern software engineering tools.

Application of OOP principles in software design and development.

Formulation and documentation of software requirements.

Ensuring software quality according to specified standards.

Study:

Stages, models, and artifacts of the software lifecycle.

Classes, objects, methods, inheritance, and polymorphism in OOP.

Software engineering standards IEEE, ISO/IEC, CMMI.

Methods and techniques of software testing.

Software quality assurance: standards, methods, metrics.

CASE tools, IDEs, and version control systems.

The objectives of the course are: to form a systematic understanding of the

concepts, principles, methodology, and technologies of software development as a set

of processes for developing software systems based on the life cycle (LC) of

information systems software; study the purpose of the tools of the object approach to

4

software design; software engineering standards; methods of creating requirements

for software development; methods and techniques for testing software.

The subject of the course is technologies for the development, testing and

operation of software modules of information systems based on modern

methodologies and tools of the object-oriented approach to software design, study of

methodologies for developing information systems software, the use of the Universal

Modeling Language (UML) for software modeling and design, the use of tools - IBM

Rational Rose, Scrum, Adile, Canban study of the main provisions for software

design based on modern technical, software, instrumental and communication tools.

The object of the course is the processes that reflect various aspects of the

creation and maintenance of software products.

The learning outcomes and competencies formed by the course are defined in

Table 1.

Learning outcomes and competencies formed by the course

Learning outcomes Competencies

LO 01 GC3, GC5, GC6, SC8, SC10

LO 02 GC2, GC8, GC9, GC10, GC11, GC12, SC5, SC9

LO 03 GC7, SC11, SC12

LO 04 SC4, SC5, SC12

LO 06 GC1, GC2, SC10, SC11

LO 07 GC1, GC2, SC6, SC7, SC8, SC11

LO 12 SC1, SC2, SC3

LO 13 SC8

LO 14 GC2, GC3, SC2, SC3, SC13

LO 16 SC15

LO 01 Analyze, purposefully search for, and choose information and reference resources and

knowledge necessary for solving professional tasks, taking into account modern achievements of

science and technology.

LO 02 To know the code of professional ethics, understand the social significance and cultural

aspects of software engineering and adhere to them in professional activities.

LO 03 To know the software life cycle's basic processes, phases, and iterations.

LO 04 To know and apply professional standards and other regulatory documents in the field of

software engineering.

LO 06 Ability to select and use a software development methodology appropriate to the task.

LO 07 To know and apply in practice the fundamental concepts, paradigms, and basic principles of

functioning of language, tools, and computing tools of software engineering.

LO 12 Apply in practice effective approaches to software design;

LO 13 To know and apply methods of algorithm development, software design, and data and

knowledge structures.

LO 14 Apply in-practice software tools for domain analysis, design, testing, visualization,

measurement, and documentation of software.

LO 16 Have skills in team development, coordination, design, and production of all types of

software documentation.

5

GC 1 Ability to think abstractly, analyze, and synthesize.

GC 2 Ability to apply knowledge in practical situations.

GC 3 Ability to communicate in the state language both orally and in writing.

GC 5 Ability to learn and master modern knowledge.

GC 6 Ability to search, process, and analyze information from various sources.

GC 7 Ability to work in a team.

GC 8 Ability to act based on ethical considerations.

GC 9 The desire to preserve the environment.

GC 10 Ability to act in a socially responsible and conscious manner.

GC 11 The ability to exercise their rights and responsibilities as a member of society, to understand

the values of civil (free democratic) society and the need for sustainable development, the rule of

law, human and civil rights, and freedoms in Ukraine.

GC 12 Ability to preserve and enhance the moral, cultural, scientific values and achievements of

society based on an understanding of the history and patterns of development of the subject area, its

place in the general system of knowledge about nature and society, and the development of society,

technology, and technology, to use various types and forms of physical activity for active recreation

and healthy lifestyle.

SC 01 Ability to identify, classify, and formulate software requirements.

SC 02 Ability to participate in the design of software, including modeling (formal description) of its

structure, behavior, and processes of functioning.

SC 03 Ability to develop architectures, modules, and components of software systems.

SC 04 Ability to formulate and ensure software quality requirements by customer requirements,

terms of reference, and standards.

SC 05 Ability to comply with specifications, standards, rules, and recommendations in the

professional field when implementing life cycle processes.

SC 06 Ability to analyze, select, and apply methods and tools to ensure information security

(including cybersecurity).

SC 07 Knowledge of data information models, and ability to create software for data storage,

extraction, and processing.

SC 08 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software

engineering problems.

SC 09 Ability to evaluate and take into account economic, social, technological, and environmental

factors affecting the field of professional activity.

SC 10 Ability to accumulate, process, and systematize professional knowledge of software

development and maintenance and recognize the importance of lifelong learning.

Ability to implement phases and iterations of the life cycle of software systems and information

technologies based on appropriate software development models and approaches.

SC 11 Ability to carry out the process of system integration, and apply change management

standards and procedures to maintain the integrity, overall functionality, and reliability of the

software.

SC 12 Ability to reasonably select and master tools for software development and maintenance.
SC 13. Ability to reasonably choose and master tools for software development and maintenance.
SC 15. Ability to use technologies and tools for distributed data processing and parallel computing in

software development.

COURSE CONTENT

Topic 1. Software life cycle models. Documentation of the automated

software system (APS). Vision & Scope, SRS, User Stories.
An overview of the main models of ZhC PZ (waterfall, iterative, spiral,

incremental). Advantages and disadvantages of each model. Selection of the optimal

6

model of residential and commercial software for a specific project. Professional

standards and other regulatory documents in the field of software engineering.

APS documentation. Types of APS documentation (technical task,

specification of requirements, operational documentation). Rules for processing APS

documentation. Use of CASE tools for APS documentation.

Software development project planning. Determination of goals, tasks, and

stages of the project. Assessment of resources required for project implementation,

taking into account economic, social, technological, and environmental factors.

Project risk management. Identification and analysis of project risks.

Development of a risk response plan. Monitoring and control of project risks.

Topic 2. Software Requirements as a field of knowledge in software

engineering. Requirements management and communication with SWEBOK

tasks.

Concept and classification of software requirements: Functional and non-

functional requirements. Qualitative and quantitative characteristics of requirements.

Collection and analysis of requirements. Methods of gathering requirements

(interviews, surveys, observations, document analysis). Analysis of completeness,

correctness, consistency, and priority of requirements. Use of CASE tools for

requirements management.

Documentation of requirements. Types of documents describing the

requirements (requirement specification, technical task). Rules for processing

documents with requirements. Using templates and standards to document

requirements.

Requirements management. Planning and control of the process of collection,

analysis, documentation, and verification of requirements. Change and verification of

requirements. Management of conflicts and risks related to requirements. Analysis

and selection of methods and means of ensuring information security.

Connection with other knowledge areas of SWEBOK. Impact of requirements

on other stages of the software life cycle. Ensuring software compliance with

requirements.

Topic 3. Features of definition and analysis of business requirements.

Definition of requirements as a stage of software development. Problems of

managing the process of developing software requirements.

Definition of business requirements. The process of defining, analyzing, and

formulating requirements for a software product based on business needs and its

goals. Application of fundamental and interdisciplinary knowledge to solve problems.

Analysis of business requirements. The process of analyzing business

requirements, including determining the structure of requirements, their priorities and

relationships, as well as the development of functional requirements.

Stage of software development. The importance of defining requirements at the

early stages of software development, methods, and approaches to this process.

Problems of managing the requirements development process. Problems that

may arise during the requirements development process and how to solve them.

7

Key aspects of requirements management: requirements change management,

requirements conflict management, risk management, and others.

Topic 4. Object-oriented approach to software design. UML language.

Basic concepts of object-oriented approach: basic concepts of object-oriented

approach, classes, objects, inheritance, polymorphism, and others.

Modeling process using UML. The main elements of UML (Unified Modeling

Language): class diagrams, interaction diagrams, sequence diagrams, activity

diagrams, and others, as well as their application in the software modeling process.

Software development using UML. Software development techniques and

approaches using UML, such as Agile, Rational Unified Process (RUP), Scrum, etc.

Management of the software development process using UML. Problems and

methods of managing the software development process using UML

Topic 5. Requirements analysis process. UML Use Case Diagram.

Requirements analysis process. The process of gathering, analyzing, and

documenting software requirements. Definition of functional and non-functional

requirements, coordination of requirements with stakeholders, as well as formulation

of generalized requirements and requirements for the project.

Requirements analysis methods. Prototyping, research method, UML (Use

Case Diagrams), etc.

Diagram of UML use cases (Use Case Diagrams). The concept of UML use

case diagrams, their structure, and elements such as actors, use cases, inclusions,

extensions, etc.

Examples of using UML use case diagrams to model and analyze software

requirements.

Topic 6. Methods of object analysis and modeling. Advanced requirements

analysis. UML activity diagram.

Methods of object analysis and modeling. Object analysis methods, scenario

analysis methods, and others.

Advanced requirements analysis. Use case diagram analysis, convention

analysis, constraint analysis, etc.

UML activity diagram (Activity Diagrams), its structure, elements, purpose,

and methods of activity analysis and modeling.

Examples of using the UML activity diagram to model various processes and

activities in software.

Topic 7. Management of changes in software requirements. The main

tasks of requirements management. Requirements tracing.
Software requirements change management: identifying, documenting, and

tracking requirements changes and their impact on the development process.

The main tasks of requirements management: definition, analysis,

documentation, storage, and tracking of requirements during the life cycle of software

development. Non-functional requirements, taking into account issues of

8

environmental protection, sustainable development, social responsibility, values of a

democratic society, the rule of law, human and citizen rights, by the laws of Ukraine,

understanding of the historical context and laws of the development of society,

technology, and technology.

Requirements Tracing: The process of tracing requirements from source

documents and analyzing their impact on various stages of software development.

Requirements Change Management Processes: requirements change

management processes and techniques, such as Agile, Scrum, and Waterfall, as well

as tools and practices for their implementation.

Topic 8. Software design stage. UML state diagram.
Description of the software design phase, including requirements analysis,

architectural design, detailed design, modeling, and testing.

Statechart Diagrams UML (Statechart Diagrams): its structure, elements,

purpose, and methods of analysis and modeling of system states.

Software design processes and methods using the UML state diagram.

Examples of using a UML state diagram to model various system states and

transitions in software.

Topic 9. System architecture design. UML class and component diagrams.

Description of the system architecture design process. Methods and processes

of system architecture design, such as defining the main components, their

relationships, and others.

UML class diagram (Class Diagram): its structure, elements, purposes and

methods of class analysis and modeling.

Processes and methods of system architecture design using the UML class

diagram. Examples of using the UML class diagram to model different classes and

their relationships in software.

UML component diagram (Component Diagram): its structure, elements, and

purpose.

Defining the system integration process, and applying change management

standards and procedures to maintain the integrity, overall functionality, and

reliability of the software.

Topic 10. Software developers. Work in a team.

The main functions of a software developer: are analysis of requirements,

design, implementation, testing, and support of software.

Basic skills and knowledge that software developers must have, such as

programming, algorithmization, software architecture, testing, version control,

communication, and others.

Organization and teamwork. Methods and approaches to organizing the work

of developers in a team, such as Agile, Scrum, Waterfall, etc., as well as problems

and approaches to solving them.

Communication and team communication. Methods and approaches to

communication and team communication, such as meetings, joint planning,

9

information sharing, etc. Approaches to the accumulation, processing, and

systematization of professional knowledge regarding the creation and maintenance of

software, lifelong learning.

Tasks and responsibilities of software developers in a team.

The list of laboratory studies by the course is given in the table. 2.

Table 2

List of laboratory studies

Topic name Content

Topic 1-3. Business analysis (analysis of the subject area). 1) Description of the current

situation (AS IS) in UML format (use case diagram).

2) Description of business problems of the customer/clients.

3) Description of interested parties/end users.

4) Subject area dictionary (glossary).

5) Analysis of business requirements in the form of a goal map and the form

of an impact map: Impact Mapping.

Topic 4. Analysis of existing solutions (analogs, competitors). Comparative analysis

by criteria.

Topic 5-7. Creating a solution concept. Description of solution functions.

Detailing of functional and non-functional requirements.

Justification of the toolkit for software development and support.

Topic 8-10. Designing a solution. System architecture design.

User interface prototyping. Drawings of interface screens/pages.

The list of self-studies by the course is given in the table. 3.

Table 3

List of self-studies

Topic name Content

Topic 1 - 10 Studying lecture material

Topic 1 - 10 Preparation for laboratory classes

Topic 1 - 10 Preparation for the exam

The number of hours of lectures, laboratory studies, and hours of self-study is

given in the technological card of the course.

TEACHING METHODS

In the process of teaching the course, in order to acquire certain learning

outcomes, to activate the educational process, it is envisaged to use such learning

methods as:

Verbal (lecture (Topic 1, 3, 5, 7, 9, 10), problem lecture (Topic 8), lecture-

visualization (Topic 2, 4, 6)).

In-person (demonstration (Topic 1-10)).

Laboratory work (Topic 1-4), project method (Topic 1-4).

10

ASSESSMENT FORMS AND METHODS

The university uses a 100-point accumulative system for evaluating the

learning outcomes of students of higher education.

The current assessment is carried out during lectures and laboratory classes

and is aimed at checking the level of preparedness of the higher education applicant

to perform specific work and is evaluated by the sum of points scored:

− for courses with a form of semester assessment

examination (exam): the maximum amount is 60 points; the

minimum amount that allows a student of higher education to

pass an exam is 35 points.
The final assessment includes semester assessment and certification of the

student of higher education.

Semester control is carried out in the form of a semester exam/

The maximum number of points that a student of higher education can receive

during the examination (examination) is 40 points. The minimum amount for which

the exam is considered passed is 25 points.

The final assessment by course is determined by summing the points for the

current and final control.

During the teaching of the course, the following assessment measures are used:

Current assessment: defense of laboratory work (40 points), written control

work (testing) (20 points).

Semester assessment: Exam (40 points).

More detailed information on the assessment system is provided in

technological card of the course.

An example of an exam card and assessment criteria.

Simon Kuznets Kharkiv National University of Economics

First (bachelor) level of higher education

Specialty "Software Engineering"

Educational and professional programme "Software Engineering"

Semester 6

Course "Software Engineering"

 EXAM CARD No. 1

Task 1

Development of the automated module "According to the movement of personnel at the enterprise".

The developed automated module is proposed for implementation at private and public

enterprises to increase the productivity of personnel department specialists. Achieving the set goal

is carried out by implementing an automated solution to the following tasks:

hiring employees;

relocation of employees;

dismissal of employees;

analysis of the personnel status of the enterprise.

In the developed module, it is necessary to provide for the identification of system users.

The end user must be able to fully perform operations with data on workers, positions, divisions,

11

and articles of layoffs, to keep track of hired, transferred, and dismissed employees.

Based on this information, analyze the personnel situation of the enterprise, as well as form

information on hired, transferred, and dismissed employees for the period with the possibility of

printing them.

Task:

build a diagram of use cases for a given subject area;

describe two use case scenarios from among those shown in the use case diagram

build an activity chart,

construct a class diagram.

Task 2

On the given diagram, indicate the type of diagram, names of structural elements and designations,

and describe in detail what exactly the diagram displays.

 Include in the report file: 1. Constructed diagrams: Use-case, activity, and classes; a table

with a description of scenarios of use cases; 2. description of the diagram and its structural

elements.

 Protocol No. ____ dated "___"__________20___ was approved at the meeting of the Information

Systems Department

Examiner PhD, Prof. Zolotaryova I.O.

Chief of the Department Ph.D., Assoc. Prof. Bondarenko D.O.

12

Assessment criteria

The final mark for the exam consists of the sum of the marks for the completion of all tasks,

rounded to a whole number according to the rules of mathematics.

The algorithm for solving each task includes separate stages that differ in complexity, time-

consumingness, and importance for solving the task. Therefore, individual tasks and stages of their

solution are evaluated separately from each other as follows:

The first task is evaluated from 0 to 30 points according to the following components:

10 points – correct and complete construction of the use case diagram and correct and

complete description of the scenarios of the two use cases;

10 points – correct and complete construction of the class diagram;

10 points - correct and complete the construction of the activity diagram.

If the parts of the task described above are not fully completed, 1 point is deducted from the

maximum score.

The second task is evaluated from 0 to 10 points according to the following components:

10 points – a correct and complete description of the components of the given diagram. If

parts of the task are not fully completed, 1 point is deducted from the maximum score.

RECOMMENDED LITERATURE

Main

1. Fundamental Approaches to Software Engineering. 22nd International

Conference, FASE 2019, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6–11, 2019,

Proceedings

2. UML-Based Software Product Line Engineering with Smarty. Published by

Springer International Publishing, 2023, https://doi.org/10.1007/978-3-031-18556-4

3. I. Borodkina, G. Borodkin, Software engineering. Guide for students of

higher educational institutions - K., "Center for educational literature" - 2018.-204 p.

4. Software Engineering at Google: Lessons Learned from Programming Over

Time by Titus Winters (Author), Tom Manshreck (Author), Hyrum Wright (Author).

O'Reilly Media; 1st edition (April 7, 2020).

5. Modern Software Engineering. Doing What Works to Build Better Software

Faster. David Farley. 2021. Addison-Wesley Professional.

6. Maxwell K. John Five levels of leadership.: Trans. from English T. Kuripko.

– Kh.: Ranok Publishing House: “Fabula”, 2019. – 304 p.

7. Joseph Heagney. Basics of project management. Plot. - 2020. - 272 p.

8. Gregory M. Horine. Project Management Absolute Beginner's Guide 5th

Edition, 2022 https://a.co/d/7oJCpuT

9. Richard Newton. Project management from A to Z. Alpina Publisher, -

2018. - 180 p.

10. Postil S. D. UML. unified language of modeling information systems /

S. D. Postil: State University. fisk. services of Ukraine. - Irpin: State University fisk.

services of Ukraine, 2019. - 321 p.

11. Martin Fowler. UML. Basics 3rd edition / Martin Fowler, Kendall Scott

- M.: Simbol-plus, 2018. - 192 p.

https://a.co/d/7oJCpuT

13

12. Robert M. Pure architecture: the art of software development" / Robert

Martin, Fabula, 2019. - 416 p.

13. Modern information technologies and systems [Electronic resource]:

monograph / N. G. Aksak, L. E. Gryzun, O. V. Shcherbakov [and others]; in general

ed. V. S. Ponomarenko — Electron. text data (22.9 MB). — Kharkiv: HNEU named

after S. Kuznetsia, 2022. — 270 p. - Access

mode:http://www.repository.hneu.edu.ua/handle/123456789/29233.

14. Yuriy Skorin, Iryna Zolotaryova. Enhancing the effectiveness of

usability testing for user interfaces // International scientific journal “Computer

systems and information technologies”. No. 3. – Khmelnitskyi: Khmelnytskyi

National University, 2023. – P. 65–74. - Access

mode:http://www.repository.hneu.edu.ua/handle/123456789/30712.

15. SWEEBOK (Software Engineering Body of

Knowledge)https://www.computer.org/education/bodies-of-knowledge/software-

engineering.

16. ISO/IEC/IEEE 90003:2018 Software

engineeringhttps://www.iso.org/standard/74348.html

17. ISO/IEC/IEEE 12207:2017 Systems and software engineering Software

life cycle processes https://www.iso.org/standard/63712.html

Information resources

Requirements management tools and standards:

● Doors Next

● ReqView

● Vision Requirements Management

● ISO/IEC/IEEE International Standards

● Volere Process

● Mastering the Requirements Process

UML tools:

● UML Resource Center at IBM Rational

● Agile Modeling (http://www.agilemodeling.com/), also refer to Extreme

Programming (http://www.extremeprogramming.org/).

● http://www.objectsbydesign.com/

● A nice page on how to choose a UML modeling tool

● OMG's UML resource page:http://www.omg.org/uml/

● Unified Modeling Language (UML)

● Common Warehouse Metamodel (CWM)

● IBM Technical Journals

● http://www.holub.com/goodies/uml/index.html

● http://www.smartdraw.com/resources/centers/uml/uml.htm

● https://github.com/Alliedium/awesome-software-engineering?tab=readme-

ov-file

http://www.repository.hneu.edu.ua/handle/123456789/30712
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.iso.org/standard/63712.html
https://jazz.net/downloads/requirements-management-doors-next/milestones/7.0.3M1
https://www.reqview.com/
https://visuresolutions.com/requirements-engineering/
https://standards.ieee.org/standard/29148-2018.html
https://www.volere.org/
https://www.volere.org/mastering-the-requirements-process-getting-requirements-right/
http://www.ibm.com/software/rational/uml/products
http://www.agilemodeling.com/
http://www.extremeprogramming.org/
http://www.objectsbydesign.com/
http://www.objectsbydesign.com/tools/modeling_tools.html
http://www.omg.org/uml/
http://www.uml.org/
http://www.omg.org/cwm/
http://www.research.ibm.com/journal/
http://www.holub.com/goodies/uml/index.html
http://www.smartdraw.com/resources/centers/uml/uml.htm
https://github.com/Alliedium/awesome-software-engineering?tab=readme-ov-file
https://github.com/Alliedium/awesome-software-engineering?tab=readme-ov-file

