MIHICTEPCTBO OCBITH I HAYKH YKPATHH
XAPKIBCBKHI HAIIOHAJIbHWIT EKOHOMIYHUI YHIBEPCUTET
IMEHI CEMEHA KY3HEIIS

3ATBEPI’)KEHO

Ha 3acifjaHHi Kadeapu
iHpOpMaLiHHIX CHCTEM.
[Tpotoxon Ne 1 Big 22.08.2023 p.

ypirra HEMAIIIKAJIO

W/

X

IPOI'PAMYBAHHS KOMIT'IOTEPHOI T'PA®IKH

po6oua nmporpama HaB4aJabHOI qucoumiag (PITH/I)

["amy3b 3HaHB 12 “Indopmaniiiai Texnomaorii”
CroeniampHiCTh 121 “InkeHepist mporpaMHoro 3ade3neveHHs”
OcBiTHi#f piBEHb nepmuii (bakajaBpcbKuii)
OcBiTHI Iporpamu “InkeHepist nporpaMHoro 3abe3nedyeHHs”
Craryc TUCIUILTIHH BuOipKoBa
MoBa BHUKJIaIaHHs, HABYaHHS Ta OL[iHIOBAHHS aHrJiiicbKka
Po3poOHuk: g #
K.T.H., JOIICHT L Oner ®POJIOB

1% //]

) 4

3aBigyBau kapenpu /

iHpopMaLiiHIX cHCTEM JImutpo BOHJJAPEHKO

["apanT nporpamu LZ/% Oner ®POJIOB

Xapkis
2024

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVED i N
at the meeting of the department VM@&@%&OT for edﬁcafwnal and methodological

information systems.
Protocol Ne 1 of 22.08.2023

Cfina NEMASHKALO

COMPUTER GRAPHICS PROGRAMMING

Program of the course

Field of knowledge 12 "Information technologies"

Specialty 121 "Software engineering"

Study cycle first (undergraduate)

Study programme "Software Engineering''
Course status elective
Language of teaching, learning and assessment English

/

Developer:
Ph.D. (Technical sciences),

Oleg FROLOV
associate professor & F

Head of Information systems
department:

Ph.D. (Technical sciences),
associate professor ' Dmytro BONDARENKO

Head of Study Programme:
Ph.D. (Technical sciences),
associate professor

Oleg FROLOV

% : Kharkiv
2024

INTRODUCTION

A significant part of the information that a user encounters has a graphic form.
Modern operating systems are configured for the graphical interface, the work of
system and application programs is visualized with graphical means , news
information streams are saturated with graphical resources, graphical methods and
tools are used in the computer game industry, graphics are widely used in scientific
activities, engineering and design work, etc. The very term "computer graphics"
today is interpreted as a type of activity in which computer equipment and software
are used as tools for creating and editing images, for digitizing visual information
about the real world for the purpose of its further processing and preservation.

Computer graphics is a field of knowledge in which, on the one hand, a
significant amount of knowledge has been accumulated, on the other hand, methods,
algorithms and practical applications are constantly being developed, it is a complex
and diverse course. Computer graphics programming is an important component of
the education of a modern programmer. In many cases, graphics needs can be met by
various existing graphics libraries and systems. However, there is a constant need to
create special graphic software tools. This can be done if you master the practical
skills of solving typical computer graphics problems and the corresponding
theoretical knowledge.

The course "Computer graphics programming" is studied by students of the
"Software engineering" specialty of all forms of education in the third year during the
fall semester.

The purpose of teaching this educational course is the formation of students'
knowledge and skills in methods, algorithms and methods of working with flat and
spatial objects in the creation of graphic software applications, with modern
professional tools for working with computer graphics, with the practice of using
computer libraries of computer graphics and visualization in modern programming
languages.

Tasks of the course are:

- acquaint applicants with modern effective algorithms and methods of
computer graphics;

- formation of competencies for designing and writing software for
displaying graphic information and visualizing objects of various forms with flat and
spatial placement and support for visual effects.

Object of the course 1s the formation of images of objects of various shapes on
the computer.

subject the course includes algorithms and methods of computer graphics,
hardware and software tools for their implementation.

In the process of training, students acquire the necessary knowledge during
lectures and performing laboratory work. Independent work of students is also of
great importance in the process of studying and consolidating knowledge. All types
of classes are developed in accordance with the transfer system of the organization of
the educational process.

3

The learning outcomes and competencies formed by the course are defined in
the table. 1.

Table 1
Learning outcomes and competences formed by the course
Learning outcomes Competences that must be mastered by a student
of higher education
LO12 SC01, SC02, SC14
LO13 GCO01, GC02, SC02, SC14
LO15 GCo02, SC10, SC11, SC13

where, GCO1. Ability to think abstractly, analyze and synthesize;

GCo02. Ability to apply knowledge in practical situations;

SCO1. Ability to identify, categorize and formulate software requirements;

SC02. Ability to participate in the design of software, including modelling (formal
description) of its structure, behaviour and processes of operation;

SC10. The ability to accumulate, process, and systematize professional knowledge about
creating and maintaining software and recognize the importance of life long learning;

SC11. Ability to implement phases and iterations of the life cycle of software systems and
information technologies based on appropriate software development models and approaches;

SC13. Ability to reasonably choose and master tools for software development and
maintenance;

SC14.Ability to think algorithmically and logically;

LO12. Apply effective software design approaches in practice;

LO13. Know and apply methods of developing algorithms, designing software and data and
knowledge structures;

LOI15. Motivated choice of programming languages and development technologies to solve
developing and maintaining software the problems.

COURSE CONTENT

Content module 1. Basics of computer graphics programming

Topic 1. Introduction to computer graphics. Subject and field of application of
computer graphics.

A brief history of the development of computer graphics. Technical means of
computer graphics support: displays , input devices, video adapter, printers, scanners,
plotters . Computer graphics software: device drivers, graphics program libraries,
specialized graphics systems and program packages.

Topic 2. Graphical tools of programming languages.

2.1. Software color management. Graphical means of programming
languages. Tools and methods. Screen coordinate systems. Display windows.
Attributes and properties of a pencil/pen (Pen). Attributes and properties of the
"brush" (Brush). Display functions of geometric primitives in OpenGL .

2.2. Raster conversion of graphic primitives. Algorithms of Bresenham
bitmap. segment discretization. Bresenham algorithms for raster discretization of

4

circle and ellipse. Algorithms for filling internal areas.

Topic 3. Coordinate systems and geometric transformations in computer
graphics problems.

3.1. Coordinate systems on the plane. Types of coordinate system. Formulas of
mutual transition between polar and Cartesian coordinate systems. Geometric
transformations of coordinates on the plane. Shift transformation (broadcast). Scaling
conversion. Transform rotation (rotation) around the origin. Superposition of
geometric transformations.

3.2. Geometric transformations on a plane in uniform coordinates. Concept of
uniform coordinates. Elementary geometric transformations in homogeneous
coordinates. Superposition of transformations in homogeneous coordinates. An
example of using geometric transformations for animation programming.

3.3. Stereometric coordinate systems. Geometric transformations in space.
Superposition of geometric transformations in 3D space. Stereometric geometric
transformations in homogeneous coordinates. Content of uniform coordinates in
space. Geometric transformations in space in uniform coordinates. Superposition of
geometric transformations in space in homogeneous coordinates.

3.4. Geometric transformations in OpenGL.

Topic 4. Shaders : general concept, execution sequence.

GLSL. Syntax. Operators, declarations, specifiers (uniform, attribute, varying,
const). Built-in functions of the GLSL OpenGL language . Vertex and fragment
shaders : assignment, vertex attributes, input and output variables, uniform variables,
varying variables. The basics of building and using shaders

Content module 2. Models and algorithms for representing objects and
building images with them

Topic 5. Images of 3D objects. Projections

5.1. Athene transformations in space. Projections. Design models.
Classification of projections, orthographic, axonometric, oblique. Prospective
projections. Methods of creating promising species.

5.2. Three-dimensional pipeline of observations. Reference system of
observations. Conversion of external coordinates into observation coordinates.
Design transformation. Field of view transformation and 3D screen coordinates.
OpenGL three-dimensional observation functions.

Topic 6. Representation of geometric information.

6.1 . Representation and smoothing of curves. Basic concepts. Concept of
parametric line. Cubic parametric lines. Polynomial interpolation. Smoothing splines.
Spline curves. Bezier curves. B- spline curves

6.2. Spatial forms. Polyhedra. Curvilinear surfaces. Bilinear and linear
surfaces. Bezier surfaces. B - c-plane surfaces.

6.3. Curves and surfaces in OpenGL.

Topic 7. Lighting and texturing models .

7.1. OpenGL lighting modeling. Diffuse and specular lighting. Coloring
according to Gouro and Fong. Setting lighting parameters in OpenGL.

5

7.2. Texturing in OpenGL. Texture filtering: nearest pixel sampling, bilinear,
trilinear, anisotropic. Texture and lighting. Automatic calculation of texture
coordinates. Environment cards. Light maps (lightmaps). Multitexturing . Pixel
operations: color mixing and translucent objects. Pixel operations: stencil buffer.
Shadows and reflections.

Topic 8. Cutting geometric primitives.

Cutting (clipping) lines. Algorithm for dividing a segment in half. Sutherland
— Cohen codes . Clipping polygons. Polygonal region hatching. Transition to 3D
clipping with a visibility pyramid.

Topic 9 . Removal of hidden lines and surfaces

Historical tour. Iterative type methods. Z-buffer method. Methods of removing
non-face faces of a polyhedron. Algorithms of Warnak and Weiler - Azerton.
Methods of priorities (artist, floating horizon). The method of binary partitioning of
space. Algorithms of sequential scanning for curved surfaces. Algorithm for
determining visible surfaces by ray tracing.

Topic 10. Methods of creating realistic images

10.1. Direct and reverse ray tracing. Rays of wood. Shading of objects.
Calculation of the intersection of the beam with the main geometric objects.
Optimization of the ray tracing method. Lighting models in ray tracing.

10.2. Theoretical multiple operations (CSG). Procedural and noise textures.
Emissivity: basic idea and system of linear equations. Emissivity: calculation of form
factors.

The list of laboratory studies in the course is given in table 2.

Table 2
The list of laboratory studies
Name of the topic and/or task Content
Topic 1. Task 1. Raster conversion of basic graphic objects.
Topic 2. Task 2. Methods of cutting segments. Windows and output areas.

Topic 3, Topic 4, Topic 5. Task | Visualization of a three-dimensional object and its
3 transformation.

Topic 6, Topic 7, Topic 8. Task | Application of surface texturing using lighting
4

Topic 9, Topic 10. Task 5. Visualization of the object model developed by means of a
three-dimensional editor, construction of shadows from the
object.

The list of self-studies in the course is given in table 3.

Table 3
List of self-studies

Name of the topic and / or task Content

Topic 1 - 10 Studying lecture material

6

Topic 1 -10 Preparation for laboratory classes

Topic 1 - 10 Preparation for the exam

The number of hours of lectures, laboratory classes, and hours of self-study is
given in the technological card of the course.

TEACHING METHODS

In the process of teaching the course, in order to acquire certain learning
outcomes, to activate the educational process, it i1s envisaged to use such teaching
methods as:

Problem lecture (Topic 1), verbal (lecture (Topic 2, 4, 5, 6, 7, 8, 9, 10)),
lecture-dialogue (Topic 3).

In person (demonstration (Topic 1 - 10)).

Practical (laboratory work (Topic 1 - 10), case studies (Topic 4)).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning
outcomes of students.

Current control is carried out during lectures, laboratory classes and is aimed
at checking the level of readiness of the student to perform a specific job and is
evaluated by the amount of points scored:

— for courses with a form of semester control as an
exam: maximum amount 1is 60 points; minimum amount
required is 35 points.

The final control includes current control and an exam.

Semester control is carried out in the form of a semester exam.

The maximum number of points that a student of higher education can receive
during the exam is 40 points. The minimum amount for which the exam is considered
passed is 25 points.

The final grade in the course is determined:

— for courses with a form of semester control as an exam:
maximum amount is 60 points; minimum amount required is 35
points.

During the teaching of the course, the following control measures are used:

Current control: presentation of laboratory tasks (48 points), current control
works (12 points).

Semester control: Grading including Exam (40 points)

More detailed information on the assessment system is provided in
technological card of the course.

An example of an exam card and assessment criteria.

7

An example of an exam card

Semyon Kuznets Kharkiv National University of Economics
First (bachelor) level of higher education
Specialty "Software Engineering"

Educational program "Software engineering"

Course "Computer graphics programming"

EXAM CARD No. 1

Task 1. The CDA algorithm for the raster representation of a straight line. The essence, an
example of software implementation, advantages and disadvantages.

Task 2. Vertex shader - purpose, types of variables transferred. An example of a vertex
shader in GLSL.

Task 3. Construct the central and parallel 3D projections of the proposed figure.
Implement animation and one of the simpler lighting effects.

- = =

Protocol No. dated" " 20 was approved at the meeting of the Department of
Information Systems.

Examiner Ph.D. , Assoc. Frolov O. V.
Chief Department of Ph.D. , Assoc. Bondarenko D. O.

Evaluation criteria

The final marks for the exam consist of the sum of the marks for the completion of all
tasks, rounded to a whole number according to the rules of mathematics.

The first and second tasks of the examination ticket are evaluated for a maximum of 12
points each. The third task is worth 16 points. The number of points obtained from the answers to
each question of the examination ticket is summed up. As a result of such a calculation, the
applicant can receive from 0 to 40 points.

The evaluation of the exam result is formed according to the following rules:

1. Task 1 can be assigned from 0 to 12 points (for the presence of an array input algorithm -
5 points, for an example of a software implementation of the algorithm - 5 points, for wrapping the
advantages and disadvantages of the algorithm - 2 points); task 2 can be awarded from 0 to 12
points (for the definition and description of GLSL language means - 6 points, for the given example
- 6 points); task 3 can be awarded from 0 to 16 points (composing a geometric model of the object -
6 points, constructing a projection - 2 points, animating the object - 4 points, implementing lighting
- 4 points).

2. 1 point is added for several solutions to one of the tasks.

3. 1 point is added for a reasoned choice of the option which is the optimal one from several
solution options.

RECOMMENDED LITERATURE

Main

1. XKypapuuk JI.M. IlporpamyBaHHs KOMII FOT€pHOI rpadiky Ta MyJbTIMEI1HHI
3acobu: HaBuanbHUI nociOuuk/ JI.M. XKypaBuuk, O.M. JleBuenko. — JIbBiB: Bua-Bo
JIpBiBCBKOI mosiTexHiku, 2019.-276 c.

2. ITiuyrin M.®. Komm’rotepHa rpadika: HaBd. noci6. / M.®. Iliuyrin, 1.O.
Kankin, B.B. Bopothnikos — K.: «llentp yu06oBoi mitepatypu», 2019. — 346 c.

3. Cmoumiii B.B. HaBuanbnwmii mociOHuK 3 mucnuiiiinu «CucteMu Bizyamizaiii
Ta po3Mi3HaBaHHS 00pa3iB» [HaBuanpbHUi mociOuuk] / B.B. Cmomiit, S.A. CaBuribka,
M.J. Mictopa, B.B. lxapynuno. - K.: ®OII SAmuuncekuii O.B., 2020.- 200 c.

4. Komm’rorepHa rpadika : HaBu4aabHUN MOCIOHUK : B 2-X KH.1. 11 3100yBaviB
cneniaabHoCTI 151 «ABTOMaTH3amiss Ta KOMIT FOTEPHO- IHTErPOBaHI TEXHOJOTI» /
VYxmamaudi : O.B. Toroceko, I1.JI. Ctyxmsk, A.I'. Mukutuimms, B.B. JleBuipkuii, P.3.
3onotuii. — Tepuonins : THTY imeni IBana Ilymros, 2023 — 304 c.

5. ImxenepHa 1 komm'ioTepHa rpadika. MeToauyHl peKoMeHAaIli 0
CaMOCTIITHOT poOOTH CTYyAEHTIB crenianbHocTi 186 "BumaBHunrBo Ta mosirpadis"
nepiioro (6akanaBpcbkoro) piBHs [Enexkrponnuit pecypc] / yknaa. A. C. 'opaees;
XapkiBChbKHM ~ HaIllOHAIbHUM exoHoMmiuHuil yHiBepcuter iMm. C. Ky3ners. —
Enextpon. Texkcrosi gad. (107 Kb). — Xapkis : XHEY im. C. Ky3nens, 2022. — 23
c. - Pexxum noctymy: http://repository.hneu.edu.ua/handle/123456789/28149

Additional

6. Collomosse J.P. Fundamentals of Computer Graphics - CM20219 / John
Collomosse. University of Bath, UK —2019. — 100 p.

7. Stemkoski, L., & Pascale, M. (2021). Developing Graphics Frameworks
with Python and OpenGL (1st ed.) / Lee Stemkoski, Michael Pascale. - CRC Press,
2021. - 344p., https://doi.org/10.1201/9781003181378.

8. Castorina M., Sassone G. Mastering Graphics Programming with Vulkan:
Develop a modern rendering engine from first principles to state-of-the-art techniques
/ Marco Castorina, Gabriel Sassone. - Packt Publishing, 2023. — 382 p.

9. Marschner S., Shirley P. Fundamentals of Computer Graphics, 5th Edition /
Steve Marschner, Peter Shirley - A K Peters/CRC Press, 2021. — 717 p.

10. Boittko b. C. BukopucTtaHHs Marpulpb NEpPETBOPEHb sl MOOYAOBH
TpUBUMIPHUX 00’€KTiB 3a nonomoror OpenGL B xomm’rorepHid rpadimi / b. C.
Bontko, M. M. Mapuenko, II. B. Pumap - BceykpaiHcbka HayKOBO-IIPAKTUYHA
KOH(epeHIliss s 3100yBayiB, acmipadTiB Ta Mojoaux BueHux lIpukiamgHi
iH(dopmaniiiHi TexHomorii". — Binauis, 2020. — C. 167 — 170.

Information resources
11. Computer Graphics with Modern OpenGL and C++ [Electronic resource].
— Access mode: https://ua.udemy.com/course/graphics-with-modern-opengl/ .

http://repository.hneu.edu.ua/handle/123456789/28149
https://doi.org/10.1201/9781003181378
https://www.amazon.com/Marco-Castorina/e/B0BTDWYGWW/ref=dp_byline_cont_book_1
https://www.amazon.com/Gabriel-Sassone/e/B0BV2WH1JV/ref=dp_byline_cont_book_2
https://ua.udemy.com/course/graphics-with-modern-opengl/

12. Learn OpenGL with Python for Graphics and Games [Electronic resource].
— Access mode: https://ua.udemy.com/course/learn-opengl-with-python-for-graphics-
and-games/ .

13. Learn the Vulkan API with C++ [Electronic resource]. — Access mode:
https://ua.udemy.com/course/learn-the-vulkan-api-with-cpp/ .

10

https://ua.udemy.com/course/learn-opengl-with-python-for-graphics-and-games/
https://ua.udemy.com/course/learn-opengl-with-python-for-graphics-and-games/
https://ua.udemy.com/course/learn-the-vulkan-api-with-cpp/

