
MIHICTBpcTBo ocBITI,I I HAyKI,I yKpAiHn
xApKIB crxnfr HAIII o HAJrbHnfr BroHo Mr.IHI,Ifr yHrB Ep c trrE T

rMEHr CEMBHA Ky3HEU^fl

3ATBEPAXEHO
Ha gaciAaHHi ra$e4pn
iHS oprrraqifi nux crlcreM.
flpotoron l',lb I eil 22.08.2023 p.

fzurysr 3HaHb

Cneuianrsicrr
Oceitrrift pineHl
Ocnirus rporpaMa

CH C TEMHE TIPOTPAMYBAHHfl

podoua rporpaMa HaBrranrnoi Arrcqur.ninu (PIIHA)

12 "IHQoperauiftHi rexHonorii"
l2l " lttxenepir nporp aMHo ro g aO egne.r eHHrtr t t

nepmufi (darcananpcrrcuft)
ttlHxteHepia nporpaMuoro ga6egue.reHHfl tt

i po6oru

AIIIKAJIO

Cmryc Ancqnnniun
Moea BLrKnaAaHHr, HaBrra:n:as. ra oqinroBaHHt

Pospo6nnr:
K.T.H., AOTIeHT

3ani4yna.r ra$e4pu
in(popMarlifiHux clrcreM

fapanr rporpaMrr

ni4uucauo KEII ,,{nrnrpo fOJIyEHVIrryIf4

/
//f!

/! lr
t t)///

f ,{unrpo EOHIAPEHKO
,, lul
I

nndiprcona
anr"uificrrca

Oner @POJIOB

Xaprcin
2024

-'ffifi-tit
NI|"E17111 l

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON I(UZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVED
at the meeting of the department
information systems

ProtocolN l of 22.08.2023

Field of knowledge
Specialfy
Study cycle
Study programme

Course status

Language

Developers:
PhD (Technical sciences),

Associate Professor

Head of Information systems

department:
Ph.D. (Technical sciences),

associate professor

Head of Study Programme
Ph.D. (Technical sciences),

associate professor

methodical work

EMASHKALO

SYSTEM PROGRAMMING
Program of the course

L2 "Information Technology"
l2l ttSoftware engineering"
first (bachelor)

" S oftware en gin eerin g"

elective
English

digital signature Dmytro HOLUBNYCHYI

Dmytro BONDARENKO

Oleg FROLOV

Kharkiv
2024

AGRE {o2,1:,1.

;#K..V
M0a07121I

//e
rod
o- ,s
ruP

3

INTRODUCTION

Today's economic conditions demand comprehensive use of the latest

information technologies from economic management specialists. The broad

capabilities of computerized means in matters of collecting, processing and issuing

the necessary information can significantly improve the quality of economic

calculations, make the process of justifying economic decisions more effective. But

the successful use of a powerful computerized tool is impossible without a clear idea

of the peculiarities of the functioning of all its constituent parts, and this, in turn,

requires solid knowledge of the processes that take place in the operating system at

the level of resource management during their work.

Knowledge of the basics of building operating systems is becoming more and

more relevant, since the trends in the development of computer technology indicate

that, on the one hand, the complexity and functionality of computer technology are

constantly and rapidly growing, and on the other hand, there is a constant trend

towards the personification of this complex techniques That is, the task of

maintaining a personal computer in working condition, adjusting the operation of its

software and configuration, timely upgrade (patch, crack) increasingly becomes a

problem not for professionals, but for the specific user of this personal computer.

The need to study system programming is determined by the emergence of new

mechanisms of interaction between system and user software, which are required for

compiling programs from common programming languages.

The purpose of the course "System programming" is to provide students with

higher education with a system of special knowledge to master the theoretical

foundations of construction, principles of design, configuration and application of

various modern operating systems that ensure the organization of computing

processes in corporate information systems of economic, management, production,

scientific and other purpose, as well as providing practical skills for automating day-

to-day administration tasks.

The objectives of the course are:

- mastering the principles of construction, purpose, structure, function and

order of creating system programs for various operating systems, their subsystems,

resource management mechanisms;

- mastering the basic methods of diagnostics, recovery, monitoring and

optimization of operating system components through the use of system utilities,

specialized libraries, etc.;

- mastering the skills of interaction with objects of the operating system by

studying their characteristics and methods of operation through the use of system

utilities.

The subject of the course is modern theoretical concepts and methodologies,

principles of functioning, interaction of system components as part of the operating

system.

4

The object of the course is the process of creating special software for

computer systems, taking into account the peculiarities of the functioning of

operating systems.

The learning outcomes and competence formed by the course are defined in the

table. 1.

Table 1

Learning outcomes and competencies formed by the course

Learning outcomes Competencies

LO 14 GK 2

LO 01 GK 6

LO 04 SK 04

LO 07 SK 06

LO 15 SK 10

where, LO 01. Analyze, purposefully search for and choose information and

reference resources and knowledge necessary for solving professional tasks, taking

into account modern achievements of science and technology.

LO 04. Know and apply professional standards and other regulatory documents in the

field of software engineering.

LO 07. To know and apply in practice the fundamental concepts, paradigms and basic

principles of functioning of linguistic, instrumental and computing tools of software

engineering.

LO 14. Apply in practice instrumental software tools for domain analysis, design,

testing, visualization, measurement and documentation of software.

LO 15. It is motivated to choose programming languages and development

technologies to solve the tasks of creating and maintaining software.

GK 2. Ability to apply knowledge in practical situations.

GK 6. Ability to search, process and analyze information from various sources.

SK 04. Ability to formulate and ensure software quality requirements in accordance

with customer requirements, specifications and standards.

SK 6. Ability to analyze, select and apply methods and tools to ensure information

security (including cyber security).

SK 10. The ability to accumulate, process and systematize professional knowledge

about creating and maintaining software and recognizing the importance of lifelong

learning.

COURSE CONTENT

Content module 1. System programming in Windows

Topic 1. Windows application architecture

1.1. Framework Windows application. Window class. The main function.

Creating a window. Creating windows using existing classes. Definition of the

WNDCLASS structure. Window class registration. Message handling in a window

function. Windows support functions. Attaching window class data to the window.

5

Changing the appearance of the window. Application programming interface.

1.2. The main function of the application. Data types used in Windows.

Message processing cycle. Sources of messages. Message interception functions.

Message queues.

1.3. Management bodies. Text editors. Scroll bars.

1.4. User system interfaces. Interface of graphic devices. Introduction of

objects to the context of devices. Get device context descriptor. Display context.

Class context. General context. Private context. Display context functions. Graphical

user interface. Multi-window interface.

Topic 2. Message interception mechanisms

2.1. Basic message interception mechanisms. Windows-hooks. Loading hooks.

Tasks and organization of message interception procedures. Interception functions.

Hook installation and uninstallation.

2.2. Specialized hooks. Local hooks. Remote hooks. System hooks. Types of

hooks. Messages for working with hooks. Defining arguments for hook handlers.

Topic 3. Processes, threads and means of interprocess interaction in

Windows

3.1. Processes. Process functions. Application IDs. Process command line.

Changing environments. Process status. Error handling. Working process directories.

Creating and ending processes. Protection of processes from unprofitable code. Error

and exception handling.

3.2. Streams Conditions for creating streams. Stream stack. Flow state. Flow

execution periods. Creation and termination of threads. Allocation of processor time

between threads. Changing the priority class of a thread. Delaying and resuming

thread execution.

3.3. Flow planning and dispatching. Types of planning. Planning strategies.

Displacing and non-displacing multitasking. Flow scheduling algorithms.

Quantization. Flow planning in real-time systems.

3.4. Basic mechanisms of interprocess interaction. Interprocess interaction

based on shared memory. Message transmission technologies.

3.5. Basic mechanisms of thread synchronization. Semaphores. Mutexes. Block

read-write. Synchronization according to the barrier principle. Thread interaction in

Windows. Software interaction interface. Distributed memory methods. Methods of

message transmission. Technology of displayed memory.

Topic 4. Fundamentals of Windows operating system security

4.1. The main tasks of ensuring security. Basic concepts of cryptography.

Concept of cryptographic algorithm and protocol. Cryptosystems with a secret key.

Public key cryptosystems. Hybrid cryptosystems. Digital signatures. Certificates.

4.2. Principles of authentication and access control. Types of objects that are

protected. Formation of access control lists. Implementation of protection of personal

objects. User accounts. Audit General principles of audit organization. Windows

Event Log.

4.3. Principles of data encryption on file systems. Creating a crypto provider.

Windows Encrypting File System. Network data security. Information protection at

6

the network level.

Content module 2. System programming in Linux

Topic 5. Linux operating system architecture

5.1. Architecture of distributions of Linux operating systems. Multilevel

systems. Microkernel architecture. Basic kernel mechanisms. Resource managers.

System call interface. Operating system resources. Hardware dependency and

portability of the operating system. Graphical interfaces.

5.2. The kernel of the operating system and its functions. Auxiliary modules of

the operating system. Kernel in privileged mode and user mode. Exchange between

applications when using the kernel in privileged mode.

5.3. File system management. Implementation of Linux file systems. Standard

file system directories. Device files. Mounting. File managers in Linux.

5.4. Commands for managing files and folders. Commands for working with

files. Commands for working with folders. The ln command and its options. Search

for files in the console. Help viewer man. Archiving. Tar and gzip utilities.

5.5. Linux command line. An overview of Linux shell commands. The bash

shell. Features of work. Access the command line. Command line symbols. Checking

conditions. Operations. Cycles and branching. Internal and external teams. System

administration teams. Substitution of commands.

5.6. Basics of working with scripts. Basics of scripting. Using structured

commands. Processing user input. Data presentation. Script management. Creating

functions. Writing scripts for graphical desktops. General information about the sed

and gawk editors. Working with other command interpreters.

Topic 6. Creation, compilation and arrangement of programs in Linux

6.1. Creating programs in Linux. Source code. Compilation. Layout. Multi-file

projects.

6.2. Self-assembly. An overview of Linux autocompilers. The make utility.

Basic MakeFile syntax. Make constants. Recursive call to make. Obtaining additional

information.

6.3. Environment. The concept of environment. Reading and modifying the

environment. Cleaning the environment.

6.4. The concept of I/O in Linux. Library input-output mechanisms of the C

language. The concept of low-level input-output. Console I/O. I/O in C++.

6.5. Basic input-output operations. Creating a file: create(). Opening a file:

open(). Closing the file: close(). Reading a file: read(). Writing a file: write().

Random access: lseek().

Topic 7. Basics of multitasking in Linux

7.1. The basics of multitasking in Linux. Library approach: system(). Processes

in Linux. Process tree. Obtaining information about the process.

7.2. Basic multitasking. Concept of fork: fork(). Transfer of control: execve().

The exec() family. Waiting process: wait().

7.3. The concept of threads in Linux. Create a thread: pthread_create(). Thread

Termination: pthread_exit(). Waiting for thread: pthread_join(). Getting information

7

about a thread: pthread_self(), pthread_equal(). Canceling a thread: pthread_cancel().

Obtaining additional information.

7.4. Advanced multitasking. Process compliance: nice(). The wait() family.

Zombie.

Topic 8. Methods of interprocess interaction in Linux

8.1. An overview of methods of interaction between processes in Linux.

General information about interactions between processes in Linux. Local methods of

interaction between processes. Remote interprocess communication.

8.2. Signals. The concept of a signal in Linux. Sending a signal: kill(). Signal

handling: sigaction(). Signals and multitasking.

8.3. Using shared memory. Memory allocation: shmget(). Activating sharing:

shmat(). Disable sharing: shmdt(). Memory usage control: shmctl(). Use of

semaphores. Traffic light control.

8.4. Using shared files. Placing a file in memory: mmap(). Freeing memory:

munmap(). Synchronization: msync().

8.5. Channels. Create a pipe: pipe(). I/O redirection: dup2(). Create a named

channel. Read, write and close FIFO.

The list of laboratory studies in the course is given in table 2.

Table 2

The list of laboratory studies

Name of the topic

and/or task

Content

Topic 1. Study of the structure of the Windows application

Topic 2. Study of message interception mechanisms in multi-window documents

Topic 3. Study of processes and flows

Topic 3. Study of means of data exchange between processes

Topic 4. Investigating operating system security tools using CryptoAPI

Topic 5. Exploring the capabilities of shell programming

Topic 6. Study of ways to create programs in Linux

Topic 7. Exploring ways to multitask programming in Linux

Topic 7. Process management in Linux

Topic 8. Study of mechanisms of interaction between processes in Linux

The list of self-studies in the course is given in table 3.

Table 3

List of self-studies

Name of the topic and/or task Content

Topic 1 – 8 Studying lecture material

Topic 1 – 8 Preparation for laboratory classes

Topic 1 – 8 Preparation for the exam

The number of hours of lectures, laboratory classes and hours of self-study are

given in the technological card for the course.

8

TEACHING METHODS

In the process of teaching the course, in order to acquire certain learning

outcomes, to activate the educational process, it is envisaged to use such teaching

methods as:

Verbal (lecture-discussion (Topic 1, 3, 5, 7, 8), problematic lecture (Topic 2),

lecture-visualization (Topic 4, 6)).

Visual (demonstration (Topic 1 – 8)).

Laboratory work (Topic 1–8), case studies (Topic 1 – 3, 7).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning

outcomes of students.

Current control is carried out during lectures, laboratory classes and is aimed

at checking the level of readiness of the student to perform a specific job and is

evaluated by the amount of points scored:

− for courses with a form of semester control as an exam: maximum amount is

60 points; minimum amount required is 35 points.

The final control includes current control and an exam.

Semester control is carried out in the form of a semester exam.

The final grade in the course is determined:

− for disciplines with a form of exam, the final grade is

the amount of all points received during the current control

and the exam grade.
During the teaching of the course, the following control measures are used:

Current control:

defense of laboratory work (40 points);

written control work (testing) (20 points).

Semester control: Grading including Exam (40 points)

An example of an exam card and assessment criteria.

An example of an examination card

Simon Kuznets Kharkiv National University of Economics

First (bachelor) level of higher education

Specialty "Software Engineering"

Educational and professional program "Software engineering"

Semester V

Course "System programming"

EXAM CARD

Task 1 (heuristic, 20 points).

9

Develop a system Windows application and provide a listing of the software code of all necessary

modules that must perform the following actions:

Create an application in which to set the filter function on the WH_CBT hook with code of type

HCBT_ACTIVATE. Demonstrate and log all actions of the installed hook. Accompany the

operation of the program by providing an output of messages about the installed hook.

Task 2 (heuristic, 20 points).

Develop a system Linux application and provide a listing of the software code of all necessary

modules that must perform the following actions:

Write an application that determines the classes, senior, junior numbers of the main peripheral

devices implemented in the system: keyboard, mouse, USB-drive, printer, video adapter, CD/DVD

drive (if available), cardreader, etc.

Protocol No. ____ dated "___"__________20___ was approved at the meeting of the Department of

Information Systems

Examiner PhD, Associate Professor Holubnychyi D.

Chief department PhD, Associate Professor Bondarenko D.

Assessment criteria

The final marks for the exam consist of the sum of the marks for the completion of all tasks,

rounded to a whole number according to the rules of mathematics.

The algorithm for solving each task includes separate stages that differ in complexity, time-

consumingness, and importance for solving the task. Therefore, individual tasks and stages of their

solution are evaluated separately from each other as follows:

Task 1 (heuristic).

The peculiarity of the first task is its execution under the control of the Windows operating

system. The task is devoted to the development of system software for the given task and to provide

a listing of the software code of all necessary modules. A program is compiled in the C++

programming language. The acquirer must create a project in the Visual Studio environment. The

main goal of solving this problem is to check the practical skills of the acquirer to use the

application programming interface to exchange data between the program and the operating system.

At the same time, the acquirer is allowed to use the existing reference literature. After checking the

program, the applicant receives K1 points according to the following requirements (Table 4).

Table 4

Generalized evaluation criteria for heuristic tasks

Points K1

or K2

Requirements

0 The applicant does not have the educational material, there is no answer to the

question

1 – 2 The acquirer does not have the educational material, the program is missing or does

not start at all.

3 – 6 The applicant possesses educational material at the elementary level of knowledge

and reproduction of individual facts and fragments. The program, supporting files,

and algorithm scheme are satisfactorily executed, there are significant spelling or

syntax errors, and there are no comments. The program partially meets the task. In

the case of its implementation, the main window is created after minor

modifications, but most of the functions for working with it are not implemented.

During operation, the program either freezes or crashes.

10

Points K1

or K2

Requirements

7 – 10 The acquirer at the level of memorization reproduces the main provisions of the

educational material. The program, supporting files and algorithm scheme are well

done, there are minor spelling or syntax errors, no comments. The presence of

unused variables, private functions and procedures is allowed. The program partially

or not fully meets the task. If it is executed, the main window, window procedure,

information about the author are created, but the rest of the functions for working

with them are not implemented.

11 – 14 The applicant reveals the essence of the main provisions of the educational material.

The program, auxiliary files, and the scheme of the algorithm are well executed,

without spelling and syntactic errors, have a minimum number of comments, and the

design style is present. The presence of unused variables, private functions and

procedures is allowed. The program partially or not fully meets the task. In case of

its execution, the modules mostly function correctly, but it needs additional

finishing.

15 – 17 The applicant reveals the essence of the main provisions of the educational material.

The program, auxiliary files, and the scheme of the algorithm are well executed,

without spelling and syntactic errors, have a minimum number of comments, and the

design style is present. The presence of unused variables is allowed. The program

meets the task, but the absence of minor auxiliary functions that make it easier to

work with it is allowed. In the case of its execution, the main modules function

correctly, but there are some insignificant inaccuracies in the execution of the task.

18 – 20 The applicant has generalized knowledge of the organization of operating systems

and applies them in practical work. The program and supporting files are perfectly

executed, without spelling and syntax errors, have a clear structure, a certain number

of comments, are designed at the appropriate level and do not contain unnecessary

variables, inactive functions, procedures. It fully corresponds to the task and the case

of execution - all modules function correctly.

Task 2 (heuristic).

The peculiarity of the second task is its execution under the control of the Linux operating

system. The task is devoted to the development of system software in the Linux operating system.

List the software code of all necessary modules. A program is compiled in the C++ programming

language. The main goal of solving this problem is to check the practical skills of the acquirer to

use the application programming interface to exchange data between the program and the operating

system. At the same time, the acquirer is allowed to use the existing reference literature. After

checking the program, the applicant receives K2 points according to the following requirements

(Table 4).

RECOMMENDED LITERATURE

Main

1. Галісеєв Г.В. Системне програмування: навч. посіб. / Г.В. Галісеєв. –

Київ: Університет "Україна", 2019. – 113 с.

2. Підручник з предмету: Системне програмування. - Дніпро: ДФК,

2024. - 255 с. – URL: https://library.kre.dp.ua/Books/2-4 kurs/Системне

програмування/Системне програмування С++.pdf

11

3. Черевик В.М. Операційна система Linux: принципи роботи з

файловою системою. Навчальний посібник / В.М. Черевик, Л.І. Танцюра, С.С.

Коротков, В.О. Сосновий. – Київ: ДУТ, 2021. – 147 с.

4. Мосіюк О. О. Операційні системи та системне програмування:

навчально-методичний посібник // О. О. Мосіюк, А. Л. Федорчук. – Житомир:

Вид-во ЖДУ ім. Івана Франка, 2022. – 76 с.

5. Tanenbaum E. Modern operating systems / E. Tanenbaum, H. Boss. – New

Jersey: Pearson Prentice-Hall, 2020. – 1120 p.

6. Silberschatz A. Operating System Concepts / A. Silberschatz, G. Gagne,

P.B. Galvin. – New Jersey: Wiley, 2021. – 1040 p.

7. Love R. Linux. System programming: Talking Directly to the Kernel and C

Library / R. Love. – Newton: O'Reilly, 2023. – 448 p.

8. Schotts W. The Linux Command Line: A Complete Introduction / W.

Schotts. – San Francisco: No Starch Press, 2022. – 480 p.

9. Suehring S. CompTIA Linux+ Practice Tests: Exam XK0-005 / S.

Suehring. – New Jersey: Sybex-Wiley, 2022. – 1352 p.

Additional

10. Граннеман С. Linux. Кишеньковий довідник / С. Граннеман. – Київ:

Діалектика, 2019. – 464 с.

11. Dave T. Shell Scripting. Linux, OS X and Unix / T. Dave, P. Brandon. –

San Francisco: No Starch Press, 2019. – 392 p.

12. Cooper M. Advanced Bash Scripting Guide - Volume 1: An in-depth

exploration of the art of shell scripting / M. Cooper. – Independently published, 2019.

– 582 p.

13. Uzayr S-b. Linux: The Ultimate Guide / Sufyan bin Uzayr. – Boca Raton:

CRC Press, 2022. – 305 p.

14. Stollings V. Operating system / V. Stollings. – Washington: Pearson, 2020.

– 1264 р.

15. Hud O. The Project Management Information System in Linux / O. Hud,

O.Veres //COLINS’2020, Volume II: Workshop. – Lviv: Ukraine, 2020. – Pp. 270 –

273.

Information resources

16. The official website of the Linux Ubuntu OS developers [Electronic

resource]. – Access mode: https://ubuntu.com/.

17. Linux [Electronic resource]. – Access mode: https://www.linux.org/.

18. Mizyuk O. Guide to Linux [Electronic resource]. – Access mode:

https://linuxguide.rozh2sch.org.ua.

19. Windows [Electronic resource]. – Access mode:

http://windows.microsoft.com/ru-ru/windows/home.

20. Holubnychyi D. " System programming " [Electronic resource]. – Access

mode: https://pns.hneu.edu.ua/course/view.php?id=4909

