MIHICTEPCTBO OCBITH I HAYKH YKPATHH
XAPKIBCHLKHI HAITIOHAJIbHUIT EKOHOMIYHUI YHIBEPCUTET
IMEHI CEMEHA KY3HELS

CBITY S

3ATBEPI)KEHO noroax
Ha 3acijjaHHi Kadeapu
iHpOpMAaIIHIX CHCTEM.
[Tporoxon Ne 1 Bix 22.08.2023 p.

o AOMIYHY
aBYaJIbH

CUCTEMHE ITPOI'PAMYBAHHSA

po6oua nporpama HaB4aabHol qucuumting (PITH/I)

["amy3b 3HaHD 12 "Indopmaniiini TexHosorii'"
CrenianpHicTh 121 "Inxkenepist nporpamMHoro 3aée3nevenHs''
OcBiTHilf piBeHb nepmni (0akajJaBpcbKuii)
OcsiTHS nporpama "InskeHepisi nporpamMHoro 3abe3nevyenns'’
Craryc QucIUILTiHA BHOipKoBa
MoBa BUKJIagaHHs, HaBYaHHS Ta OI[IHIOBAHHS aHrmiificbka
Po3po0Huk:
K.T.H., IOLEHT nignucano KEIT Jmutpo 'OJIYBHUYN

3aBigyBad kadeapu 74

iHpOpManiHHUX CHCTEM 0{/’// Jmutpo BOHITAPEHKO

°/

["apanT nporpamu Oner ®POJIOB

XapkiB
2024

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVED
at the meeting of the department
information systems

Protocol Ne 1 0f 22.08.2023

SYSTEM PROGRAMMING

Program of the course

Field of knowledge 12 "Information Technology"
Specialty 121 "Software engineering"
Study cycle first (bachelor)
Study programme "Software engineering"
Course status elective
Language English
Developers:
PhD (Technical sciences), digital signature Dmytro HOLUBNYCHYI

Associate Professor

Head of Information systems / Y
department: 1Y/ Dmytro BONDARENKO
Ph.D. (Technical sciences), 5 /
associate professor ol
Head of Study Programme /7 wr / Oleg FROLOV
Ph.D. (Technical sciences), = /
associate professor
Kharkiv

2024

INTRODUCTION

Today's economic conditions demand comprehensive use of the latest
information technologies from economic management specialists. The broad
capabilities of computerized means in matters of collecting, processing and issuing
the necessary information can significantly improve the quality of economic
calculations, make the process of justifying economic decisions more effective. But
the successful use of a powerful computerized tool is impossible without a clear idea
of the peculiarities of the functioning of all its constituent parts, and this, in turn,
requires solid knowledge of the processes that take place in the operating system at
the level of resource management during their work.

Knowledge of the basics of building operating systems is becoming more and
more relevant, since the trends in the development of computer technology indicate
that, on the one hand, the complexity and functionality of computer technology are
constantly and rapidly growing, and on the other hand, there is a constant trend
towards the personification of this complex techniques That is, the task of
maintaining a personal computer in working condition, adjusting the operation of its
software and configuration, timely upgrade (patch, crack) increasingly becomes a
problem not for professionals, but for the specific user of this personal computer.

The need to study system programming is determined by the emergence of new
mechanisms of interaction between system and user software, which are required for
compiling programs from common programming languages.

The purpose of the course "System programming" is to provide students with
higher education with a system of special knowledge to master the theoretical
foundations of construction, principles of design, configuration and application of
various modern operating systems that ensure the organization of computing
processes in corporate information systems of economic, management, production,
scientific and other purpose, as well as providing practical skills for automating day-
to-day administration tasks.

The objectives of the course are:

- mastering the principles of construction, purpose, structure, function and
order of creating system programs for various operating systems, their subsystems,
resource management mechanisms;

- mastering the basic methods of diagnostics, recovery, monitoring and
optimization of operating system components through the use of system utilities,
specialized libraries, etc.;

- mastering the skills of interaction with objects of the operating system by
studying their characteristics and methods of operation through the use of system
utilities.

The subject of the course is modern theoretical concepts and methodologies,
principles of functioning, interaction of system components as part of the operating
system.

The object of the course is the process of creating special software for
computer systems, taking into account the peculiarities of the functioning of
operating systems.

The learning outcomes and competence formed by the course are defined in the
table. 1.

Table 1

Learning outcomes and competencies formed by the course
Learning outcomes Competencies

LO 14 GK 2

LO 01 GK 6

LO 04 SK 04

LO 07 SK 06

LO 15 SK 10

where, LO 01. Analyze, purposefully search for and choose information and
reference resources and knowledge necessary for solving professional tasks, taking
into account modern achievements of science and technology.

LO 04. Know and apply professional standards and other regulatory documents in the
field of software engineering.

LO 07. To know and apply in practice the fundamental concepts, paradigms and basic
principles of functioning of linguistic, instrumental and computing tools of software
engineering.

LO 14. Apply in practice instrumental software tools for domain analysis, design,
testing, visualization, measurement and documentation of software.

LO 15. It is motivated to choose programming languages and development
technologies to solve the tasks of creating and maintaining software.

GK 2. Ability to apply knowledge in practical situations.

GK 6. Ability to search, process and analyze information from various sources.

SK 04. Ability to formulate and ensure software quality requirements in accordance
with customer requirements, specifications and standards.

SK 6. Ability to analyze, select and apply methods and tools to ensure information
security (including cyber security).

SK 10. The ability to accumulate, process and systematize professional knowledge
about creating and maintaining software and recognizing the importance of lifelong
learning.

COURSE CONTENT

Content module 1. System programming in Windows

Topic 1. Windows application architecture

1.1.Framework Windows application. Window class. The main function.
Creating a window. Creating windows using existing classes. Definition of the
WNDCLASS structure. Window class registration. Message handling in a window
function. Windows support functions. Attaching window class data to the window.

4

Changing the appearance of the window. Application programming interface.

1.2. The main function of the application. Data types used in Windows.
Message processing cycle. Sources of messages. Message interception functions.
Message queues.

1.3. Management bodies. Text editors. Scroll bars.

1.4. User system interfaces. Interface of graphic devices. Introduction of
objects to the context of devices. Get device context descriptor. Display context.
Class context. General context. Private context. Display context functions. Graphical
user interface. Multi-window interface.

Topic 2. Message interception mechanisms

2.1. Basic message interception mechanisms. Windows-hooks. Loading hooks.
Tasks and organization of message interception procedures. Interception functions.
Hook installation and uninstallation.

2.2. Specialized hooks. Local hooks. Remote hooks. System hooks. Types of
hooks. Messages for working with hooks. Defining arguments for hook handlers.

Topic 3. Processes, threads and means of interprocess interaction in
Windows

3.1.Processes. Process functions. Application IDs. Process command line.
Changing environments. Process status. Error handling. Working process directories.
Creating and ending processes. Protection of processes from unprofitable code. Error
and exception handling.

3.2. Streams Conditions for creating streams. Stream stack. Flow state. Flow
execution periods. Creation and termination of threads. Allocation of processor time
between threads. Changing the priority class of a thread. Delaying and resuming
thread execution.

3.3. Flow planning and dispatching. Types of planning. Planning strategies.
Displacing and non-displacing multitasking. Flow scheduling algorithms.
Quantization. Flow planning in real-time systems.

3.4. Basic mechanisms of interprocess interaction. Interprocess interaction
based on shared memory. Message transmission technologies.

3.5.Basic mechanisms of thread synchronization. Semaphores. Mutexes. Block
read-write. Synchronization according to the barrier principle. Thread interaction in
Windows. Software interaction interface. Distributed memory methods. Methods of
message transmission. Technology of displayed memory.

Topic 4. Fundamentals of Windows operating system security

4.1. The main tasks of ensuring security. Basic concepts of cryptography.
Concept of cryptographic algorithm and protocol. Cryptosystems with a secret key.
Public key cryptosystems. Hybrid cryptosystems. Digital signatures. Certificates.

4.2. Principles of authentication and access control. Types of objects that are
protected. Formation of access control lists. Implementation of protection of personal
objects. User accounts. Audit General principles of audit organization. Windows
Event Log.

4.3. Principles of data encryption on file systems. Creating a crypto provider.
Windows Encrypting File System. Network data security. Information protection at

5

the network level.

Content module 2. System programming in Linux

Topic S. Linux operating system architecture

5.1.Architecture of distributions of Linux operating systems. Multilevel
systems. Microkernel architecture. Basic kernel mechanisms. Resource managers.
System call interface. Operating system resources. Hardware dependency and
portability of the operating system. Graphical interfaces.

5.2. The kernel of the operating system and its functions. Auxiliary modules of
the operating system. Kernel in privileged mode and user mode. Exchange between
applications when using the kernel in privileged mode.

5.3. File system management. Implementation of Linux file systems. Standard
file system directories. Device files. Mounting. File managers in Linux.

5.4.Commands for managing files and folders. Commands for working with
files. Commands for working with folders. The In command and its options. Search
for files in the console. Help viewer man. Archiving. Tar and gzip utilities.

5.5.Linux command line. An overview of Linux shell commands. The bash
shell. Features of work. Access the command line. Command line symbols. Checking
conditions. Operations. Cycles and branching. Internal and external teams. System
administration teams. Substitution of commands.

5.6.Basics of working with scripts. Basics of scripting. Using structured
commands. Processing user input. Data presentation. Script management. Creating
functions. Writing scripts for graphical desktops. General information about the sed
and gawk editors. Working with other command interpreters.

Topic 6. Creation, compilation and arrangement of programs in Linux

6.1.Creating programs in Linux. Source code. Compilation. Layout. Multi-file
projects.

6.2.Self-assembly. An overview of Linux autocompilers. The make utility.
Basic MakeFile syntax. Make constants. Recursive call to make. Obtaining additional
information.

6.3. Environment. The concept of environment. Reading and modifying the
environment. Cleaning the environment.

6.4. The concept of I/O in Linux. Library input-output mechanisms of the C
language. The concept of low-level input-output. Console I/O. I/O in C++.

6.5.Basic input-output operations. Creating a file: create(). Opening a file:
open(). Closing the file: close(). Reading a file: read(). Writing a file: write().
Random access: Iseek().

Topic 7. Basics of multitasking in Linux

7.1. The basics of multitasking in Linux. Library approach: system(). Processes
in Linux. Process tree. Obtaining information about the process.

7.2. Basic multitasking. Concept of fork: fork(). Transfer of control: execve().
The exec() family. Waiting process: wait().

7.3. The concept of threads in Linux. Create a thread: pthread create(). Thread
Termination: pthread exit(). Waiting for thread: pthread join(). Getting information

6

about a thread: pthread self(), pthread equal(). Canceling a thread: pthread cancel().
Obtaining additional information.

7.4. Advanced multitasking. Process compliance: nice(). The wait() family.
Zombie.

Topic 8. Methods of interprocess interaction in Linux

8.1. An overview of methods of interaction between processes in Linux.
General information about interactions between processes in Linux. Local methods of
interaction between processes. Remote interprocess communication.

8.2. Signals. The concept of a signal in Linux. Sending a signal: kill(). Signal
handling: sigaction(). Signals and multitasking.

8.3. Using shared memory. Memory allocation: shmget(). Activating sharing:
shmat(). Disable sharing: shmdt(). Memory usage control: shmctl(). Use of
semaphores. Traffic light control.

8.4. Using shared files. Placing a file in memory: mmap(). Freeing memory:
munmap(). Synchronization: msync().

8.5. Channels. Create a pipe: pipe(). I/O redirection: dup2(). Create a named
channel. Read, write and close FIFO.

The list of laboratory studies in the course is given in table 2.

Table 2
The list of laboratory studies
Name of the topic Content
and/or task
Topic 1. Study of the structure of the Windows application
Topic 2. Study of message interception mechanisms in multi-window documents
Topic 3. Study of processes and flows
Topic 3. Study of means of data exchange between processes
Topic 4. Investigating operating system security tools using CryptoAPI
Topic 5. Exploring the capabilities of shell programming
Topic 6. Study of ways to create programs in Linux
Topic 7. Exploring ways to multitask programming in Linux
Topic 7. Process management in Linux
Topic 8. Study of mechanisms of interaction between processes in Linux
The list of self-studies in the course is given in table 3.
Table 3
List of self-studies
Name of the topic and/or task Content
Topic 1 —8 Studying lecture material
Topic 1 — 8 Preparation for laboratory classes
Topic 1 — 8 Preparation for the exam

The number of hours of lectures, laboratory classes and hours of self-study are
given in the technological card for the course.

TEACHING METHODS

In the process of teaching the course, in order to acquire certain learning
outcomes, to activate the educational process, it is envisaged to use such teaching
methods as:

Verbal (lecture-discussion (Topic 1, 3, 5, 7, 8), problematic lecture (Topic 2),
lecture-visualization (Topic 4, 6)).

Visual (demonstration (Topic 1 — 8)).

Laboratory work (Topic 1-8), case studies (Topic 1 —3, 7).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning
outcomes of students.

Current control is carried out during lectures, laboratory classes and is aimed
at checking the level of readiness of the student to perform a specific job and is
evaluated by the amount of points scored:

— for courses with a form of semester control as an exam: maximum amount is
60 points; minimum amount required is 35 points.

The final control includes current control and an exam.

Semester control is carried out in the form of a semester exam.

The final grade in the course is determined:

— for disciplines with a form of exam, the final grade is
the amount of all points received during the current control
and the exam grade.

During the teaching of the course, the following control measures are used:

Current control:

defense of laboratory work (40 points);

written control work (testing) (20 points).

Semester control: Grading including Exam (40 points)

An example of an exam card and assessment criteria.

An example of an examination card

Simon Kuznets Kharkiv National University of Economics
First (bachelor) level of higher education
Specialty "Software Engineering"
Educational and professional program "Software engineering'
Semester V
Course "System programming"

EXAM CARD

Task 1 (heuristic, 20 points).

Develop a system Windows application and provide a listing of the software code of all necessary
modules that must perform the following actions:

Create an application in which to set the filter function on the WH_CBT hook with code of type
HCBT ACTIVATE. Demonstrate and log all actions of the installed hook. Accompany the
operation of the program by providing an output of messages about the installed hook.

Task 2 (heuristic, 20 points).

Develop a system Linux application and provide a listing of the software code of all necessary
modules that must perform the following actions:

Write an application that determines the classes, senior, junior numbers of the main peripheral
devices implemented in the system: keyboard, mouse, USB-drive, printer, video adapter, CD/DVD
drive (if available), cardreader, etc.

Protocol No. dated" " 20 was approved at the meeting of the Department of
Information Systems

Examiner PhD, Associate Professor Holubnychyi D.
Chief department PhD, Associate Professor Bondarenko D.

Assessment criteria
The final marks for the exam consist of the sum of the marks for the completion of all tasks,
rounded to a whole number according to the rules of mathematics.
The algorithm for solving each task includes separate stages that differ in complexity, time-
consumingness, and importance for solving the task. Therefore, individual tasks and stages of their
solution are evaluated separately from each other as follows:

Task 1 (heuristic).

The peculiarity of the first task is its execution under the control of the Windows operating
system. The task is devoted to the development of system software for the given task and to provide
a listing of the software code of all necessary modules. A program is compiled in the C++
programming language. The acquirer must create a project in the Visual Studio environment. The
main goal of solving this problem is to check the practical skills of the acquirer to use the
application programming interface to exchange data between the program and the operating system.
At the same time, the acquirer is allowed to use the existing reference literature. After checking the
program, the applicant receives K1 points according to the following requirements (Table 4).

Table 4
Generalized evaluation criteria for heuristic tasks
Points K1 Requirements
or K2
0 The applicant does not have the educational material, there is no answer to the
question

1-2 The acquirer does not have the educational material, the program is missing or does
not start at all.

3-6 The applicant possesses educational material at the elementary level of knowledge
and reproduction of individual facts and fragments. The program, supporting files,
and algorithm scheme are satisfactorily executed, there are significant spelling or
syntax errors, and there are no comments. The program partially meets the task. In
the case of its implementation, the main window is created after minor
modifications, but most of the functions for working with it are not implemented.
During operation, the program either freezes or crashes.

9

Points K1 Requirements
or K2

7—10 | The acquirer at the level of memorization reproduces the main provisions of the
educational material. The program, supporting files and algorithm scheme are well
done, there are minor spelling or syntax errors, no comments. The presence of
unused variables, private functions and procedures is allowed. The program partially
or not fully meets the task. If it is executed, the main window, window procedure,
information about the author are created, but the rest of the functions for working
with them are not implemented.

11 -14 | The applicant reveals the essence of the main provisions of the educational material.
The program, auxiliary files, and the scheme of the algorithm are well executed,
without spelling and syntactic errors, have a minimum number of comments, and the
design style is present. The presence of unused variables, private functions and
procedures is allowed. The program partially or not fully meets the task. In case of
its execution, the modules mostly function correctly, but it needs additional
finishing.

15—17 | The applicant reveals the essence of the main provisions of the educational material.
The program, auxiliary files, and the scheme of the algorithm are well executed,
without spelling and syntactic errors, have a minimum number of comments, and the
design style is present. The presence of unused variables is allowed. The program
meets the task, but the absence of minor auxiliary functions that make it easier to
work with it is allowed. In the case of its execution, the main modules function
correctly, but there are some insignificant inaccuracies in the execution of the task.

18 —20 | The applicant has generalized knowledge of the organization of operating systems
and applies them in practical work. The program and supporting files are perfectly
executed, without spelling and syntax errors, have a clear structure, a certain number
of comments, are designed at the appropriate level and do not contain unnecessary
variables, inactive functions, procedures. It fully corresponds to the task and the case
of execution - all modules function correctly.

Task 2 (heuristic).

The peculiarity of the second task is its execution under the control of the Linux operating
system. The task is devoted to the development of system software in the Linux operating system.
List the software code of all necessary modules. A program is compiled in the C++ programming
language. The main goal of solving this problem is to check the practical skills of the acquirer to
use the application programming interface to exchange data between the program and the operating
system. At the same time, the acquirer is allowed to use the existing reference literature. After
checking the program, the applicant receives K2 points according to the following requirements
(Table 4).

RECOMMENDED LITERATURE

Main
1. TamiceeB I'.B. Cucremne nporpamyBaHHs: HaBd. noci6. / I'.B. ["amicees. —
Kuis: YuiBepcurer "Ykpaina", 2019. — 113 c.
2. Ilimpyunuk 3 mnpenmery: Cucremne mnporpamyBanHsA. - Jluinpo: DK,
2024. - 255 c¢. — URL: https://library.kre.dp.ua/Books/2-4 kurs/Cucremne
nporpamyBaHHs/CuctemHue nporpamyBanns C++.pdf

10

3. YepeBuxk B.M. Onmepamiitna cucrtema Linux: npuHOunu podotud 3
(aitnoBoro cucremoro. HaBuansHuii nocionuk / B.M. Yepesuk, JI.I. Tanutopa, C.C.
Kopotkos, B.O. Cocnouii. — Kuis: YT, 2021. — 147 c.

4. Mocitok O. O. OmnepariifHi CUCTEeMHU Ta CUCTEMHE MPOrPAMYBAaHHS:
HaBYaIbHO-MeTOAMYHMM 1ociOHuK // O. O. Mocitk, A. JI. ®epopuyk. — Kutomup:
Bug-so XXV im. IBana ®panka, 2022. — 76 c.

5. Tanenbaum E. Modern operating systems / E. Tanenbaum, H. Boss. — New
Jersey: Pearson Prentice-Hall, 2020. — 1120 p.

6. Silberschatz A. Operating System Concepts / A. Silberschatz, G. Gagne,
P.B. Galvin. — New Jersey: Wiley, 2021. — 1040 p.

7. Love R. Linux. System programming: Talking Directly to the Kernel and C
Library / R. Love. — Newton: O'Reilly, 2023. — 448 p.

8. Schotts W. The Linux Command Line: A Complete Introduction / W.
Schotts. — San Francisco: No Starch Press, 2022. — 480 p.

9. Suehring S. CompTIA Linux+ Practice Tests: Exam XKO0-005 / S.
Suehring. — New Jersey: Sybex-Wiley, 2022. — 1352 p.

Additional

10. I'panneman C. Linux. KumenbkoBuii goBinnuk / C. I'panHeman. — Kuis:
HMianektuka, 2019. — 464 c.

11. Dave T. Shell Scripting. Linux, OS X and Unix / T. Dave, P. Brandon. —
San Francisco: No Starch Press, 2019. — 392 p.

12. Cooper M. Advanced Bash Scripting Guide - Volume 1: An in-depth
exploration of the art of shell scripting / M. Cooper. — Independently published, 2019.
-582p.

13. Uzayr S-b. Linux: The Ultimate Guide / Sufyan bin Uzayr. — Boca Raton:
CRC Press, 2022. — 305 p.

14. Stollings V. Operating system / V. Stollings. — Washington: Pearson, 2020.
— 1264 p.

15. Hud O. The Project Management Information System in Linux / O. Hud,
O.Veres //COLINS’2020, Volume II: Workshop. — Lviv: Ukraine, 2020. — Pp. 270 —
273.

Information resources
16. The official website of the Linux Ubuntu OS developers [Electronic
resource]. — Access mode: https://ubuntu.com/.
17. Linux [Electronic resource]. — Access mode: https://www.linux.org/.

18. Mizyuk O. Guide to Linux [Electronic resource]. — Access mode:
https://linuxguide.rozh2sch.org.ua.
19. Windows [Electronic resource]. — Access mode:

http://windows.microsoft.com/ru-ru/windows/home.
20. Holubnychyi D. " System programming " [Electronic resource]. — Access
mode: https://pns.hneu.edu.ua/course/view.php?1d=4909

11

