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An approach to eliminate multicollinearity problems in regression analysis using QR decomposition of 

rectangular matrices by Householder reflection has been proposed. The reliability of this computational 

procedure has been proved. 

Povzetek: V regresijski analizi je narejena ocena parametrov s pomočjo dekompozicije QR. 

 

1 Introduction 
In substantiating the decision taken in the management of 

various socio-economic systems, it is important to 

choose an analytical tool that analyzes the state of 

systems and predicts their further development.  

In the presence of various kinds of uncertainties and 

a large amount of various data, in the problems of 

economic modeling, two main approaches are most often 

used recently: fuzzy modeling [1-5] and various 

statistical methods [6-8]. 

Among the last, most often, multiple regression 

analysis is used as such a tool [9-13].  

Despite its prevalence in economics and duration in 

applications, many problems still need to be solved, since 

the existing algorithms for multiple regression analysis 

are far from perfect [14-17]. 

To solve many problems of mathematical methods in 

economics, the so-called QR decomposition of 

rectangular matrices is useful [18-21]. 

An n×m matrix X is decomposed into two factors X 

= QR, where Q is an n×n orthogonal matrix and R is an 

upper triangular n×m matrix with zero entries below the 

main diagonal. 

Recall that the determinant of the orthogonal matrix 

is equal to one |Q| = 1; its inverse matrix coincides with 

the transposed Q–1=Q (i.e. QQ = QQ = I), and 

orthogonal transformation of vectors a, b does not 

change their scalar products: (Qa,Qb) = (a,b); 

|Qa| = |a| = a; |Qb| = |b| = b.  

It can be argued that numerical algorithms with 

orthogonal transformations do not introduce additional 

errors into the solution of the problem. 

2 QR decomposition to solve the 

problem of multicollinearity 
Consider how QR decomposition helps to overcome the 

problem of multicollinearity in regression analysis. 

Suppose we need to find the best estimates of the 

parameters b of a linear three factor regression model 

from 6 observations (n = 6; m = 3+1 =4): 

Y = Xb + E, 

which in expanded form reduces to solving the overvalue 

value of a system of 6 linear equations with respect to 4 

unknowns (b0 , b1 , b2 , b3):  

y1 = b0 + b1x11 + b2x21 + b3x31 + e1 

y2 = b0 + b1x12 + b2x22 + b3x32 + e2 

y3 = b0 + b1x13 + b2x23 + b3x33 + e3 

y4 = b0 + b1x14 + b2x24 + b3x34 + e4 

y5 = b0 + b1x15 + b2x25 + b3x35 + e5 

y6 = b0 + b1x16 + b2x26 + b3x36 + e6 
 

Here Е – vector of errors (residuals ei ), which can be 

found after determining the estimates of the model 

parameters b0 , b1 , b2 , b3 . 

If the QR decomposition of the matrix Х = QR is 

known, then the above problem is solved as follows.  

Should multiply the matrix equation Y = QRb + E 

leftward to the orthogonal matrix Q and we obtain an 

equivalent equation Z = Rb +  , where marked Z = QY, 

 = QE.  
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In expanded form we have a system of linear equations 

with a triangular matrix R: 

 

z1 = b0r01 + b1r11 + b2r21 + b3r31 + 1 

z2 = b1r12 + b2r22 + b3r32 + 2 

z3 = b2r23 + b3r33 + 3 

z4 = b3r34 + 4 

z5 = 5 

z6 = 6 

 

Due to the orthogonality of the matrix 

transformation, the following relation is preserved 

|| || = ||E||, that is, the sum of the squares of the 

converted errors  2
i  (vector norm ) is always equal 

to the sum of the squares of the residuals of the original 

system of equations  2
ie  (vector norm Е).  

Due to the successful determination of the model 

parameters bi  you can equate to zero the first few 

components of the vector   and obtain the minimum 

value of the sum of the squares of the residuals  

 

minei → 2
.  

 

So it is possible to obtain estimates of the parameters 

of the model by the least squares method (but in a 

slightly different, non-standard computational way, 

without first drawing up a system of normal equations). 

If the last diagonal element of the triangular matrix R 

is nonzero r34 ≠ 0, then you can equate to zero the 

maximum number (m) of the first components  i and 

find estimates of the model parameters from the 

triangular system of equations. 

This also determines the (minimum) sum of the 

squares of the residuals 
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If the last diagonal element of the triangular matrix R 

is exactly equal to zero r34 = 0, then this means that the 

last variable х4  is not independent, but it is a linear 

combination of other argument variables    

х4 = а0 + а1х1 + а2х2 + а3х3 .  

In this case, the estimate b4 = 0 should be equated to 

zero.  

That is, it is not necessary to include in the model a 

combination of already taken into account variables, and 

estimates of other parameters of the model should be 

obtained from the conditions of zero of the smaller 

number of the first components i = 0.  

If the last diagonal element of the triangular matrix R 

is not exactly zero, but close to it |r34|  0, this means that 

there is a multicollinear relationship between the source 

variables xi .  

In this case, it makes sense to equate the score b4 = 0 

to zero and remove the questionable term from the model 

(otherwise an unstable solution with large errors will be 

obtained). 

So, if we have a QR decomposition of the matrix X, 

the problem of multi-linearity is solved quite simply. 

At the same time, the strong side of the QR 

decomposition is that it allows you to calculate (find a 

numerical) solution to the least squares problem.  

As is well known, the classical, ordinary least 

squares method gives us a closed solution in the form of 

normal equations. But this solution is not always suitable 

for practical, specific applications.  

Therefore, if you need to find the actual numerical 

solution, the least squares method is not suitable, at the 

same time, the QR decomposition easily gives such 

numerical values. 

It should be noted that today the most well-known 

and used methods for obtaining an orthogonal matrix Q 

are the Gram-Schmidt process, the Householder 

transformation, and the Givens rotation. 

An orthogonal matrix Q (and a triangular matrix R) 

can be obtained by successive operations with matrices 

Hk = I – 2kk, where I – single matrix, k – normalized 

vector (kk=1), in which the first (k-1) components are 

zero. 

It's not hard to see that HkHk = HkHk = I, that is, the 

matrix Hk is orthogonal. This matrix is also called as the 

Householder reflection matrix. 

Any vector can be represented as a = a1  + a2 , 

where ,  – orthonormal vectors ( = 0;  = 1; 

 = 1).  

Householder reflection Нa = –a1  + a2   changes 

the sign of the first component to the opposite. 

We have to take into account some important 

properties of the Householder matrix: it is Hermitian 

H=H* and unitary HH*=I, and therefore it is an 

involution H2=I. In this case, the transformation Hu(x)  

displays (reflects) point x to point x-2(u, x)u.  

The Householder matrix has one eigenvalue equal to 

(-1), which corresponds to the eigenvector u, while all 

other eigenvalues are equal to (+1).  

In this case, the determinant of the Householder 

matrix is (-1), and the Householder transformation in the 

metric space preserves distances. 

3 Converting a rectangular matrix 

to upper triangular 
Consider the process of sequential transformation of a 

rectangular matrix А = [a1 , a2 , … , am] to the upper 

triangular shape (possibly with permutations of 

columns). 

The first transformation with a matrix Н1  must 

transform the first vector a1  (the first column of the 

matrix А) to vector а1 е1 , where е1 a coordinate vector 

in which only one first element is nonzero (this element 

is equal to 1, the other elements are zero); as а1 is marked 
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length of the vector а1 (because the orthogonal 

transformation does not change the length of the vector).  

Consider the approach of how to find a vector 1 , 

which defines the whole matrix Н1 .  

To do this, consider that again (re-)reflection restores 

vector а1 : 

а1 = Н1 (а1 е1) = (I - 211)(а1 е1) = а1 е1 +2а1111 , 

hence the vector 1  proportional to the vector а1 , to the 

first component of which a value а1 is added; sign (+ or 

–) should be selected by the sign of the element а11 .  

So we get a (still normalized) vector 1  in the form 

1 = a1 + a1sgn(a11)e1 .  

The square of the length of this vector is equal to 

11 = 2a1 (a1 + |a11|).  

Thus the first Hausholder matrix is constructed 

𝐻1 = 𝐼 −
𝛺1𝛺1

′

𝑎1(𝑎1+|𝑎11|)
.  

In the transformed matrix А in the first column will 

have only one non-zero element: H1 a1 = a1 - 1 = 

= -a1sgn(a11)e1 .  

Other converted columns of matrix А (and the 

dependent variable column Y) have the form: H1 aj = aj  –

 j1 , where j – numerical coefficients 𝜆𝑗 =
(𝑎1,𝑎𝑗)+𝑎1⋅𝑠𝑔𝑛(𝑎11)⋅𝑎𝑗1

𝑎1(𝑎1+|𝑎11|)
  

The first elements of the converted columns will no 

longer change in subsequent ones Householder 

reflections.  

Without these first elements of the norms of all 

vectors (columns of the transformed matrix А) are 

reduced on the value 
2
jka  (by now k = 1).  

Let find the column aq  with the highest residual 

norm (relative to the original norm): 
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If the largest relative residual norm is less than some 

limit value (for instance, 0,01), further transformations 

are canceled, the process ends prematurely due to the 

detection of multicollinear connections. 

In the second stage we find the matrix Н2 , which 

transform vector aq  (without first component) to vector 

(аq)*е2 , where е2  – the second coordinate vector; by 

(аq)* marked shortened vector аq length without its first 

component.  

Thus, after the second transformation, the vector аq 

will have two non-zero components. 

Then again we find the residual norms and determine 

the next vector ар , which (without the first two 

components) will be converted to (ар)*е3 . 

The process will end after m iterations, or early if the 

residual norms become less than accepted limit level. 

Usually in regression analysis the first column of the 

matrix Х (matrix А) there is a column of ones х0  1 (to 

take into account in the regression model the obligatory 

free term).  

Therefore, at the first stage (of Householder reflections), 

it is the first The order of selection of the following 

columns for conversion is determined by the values of 

their relative residual norms. 

4 An example of the implementation 

of the algorithm 
The described above algorithm was implemented in an 

electronic spreadsheet Excel in the macros form on the 

VBA language (Visual Basic for Application).  

Consider numerical example of the analysis of the 

regression dependence of the resultant feature on 5-

factors, the corresponding initial data for this are 

presented in Table.1. 

 

Table 1. Data for regression analysis 

№ у x0 x1 x2 x3 x4 x5 

1 1075,3 1 32,06 17,9 12,08 35,61 8,33 

2 1002,7 1 27,57 10,23 14,06 37,48 10,63 

3 995,6 1 27,88 10,29 11,26 37,77 12,72 

4 872,4 1 31,65 11,72 7,32 34,98 14,25 

5 909,3 1 34,81 12,64 1,68 39,04 11,75 

6 1009,9 1 29,47 10,87 1,31 46,14 12,15 

7 919,7 1 34,42 12,77 1,28 41,04 10,48 

8 876,2 1 32,76 12,26 1,06 42,53 11,32 

9 908,6 1 31,24 11,65 4,49 41,27 11,28 

10 935,8 1 30,4 11,33 6,88 40,07 11,26 

11 949,9 1 29,96 11,18 8,84 39,48 10,5 

12 927,4 1 30,49 11,41 7,73 39,55 10,78 

13 1003,9 1 29,71 11,05 13,08 29,46 16,68 

14 1017,6 1 29,02 10,79 14,34 29,06 16,77 

15 997,6 1 29,55 10,99 11,75 30,07 17,63 

16 958,2 1 30,79 11,44 7,94 31,29 18,54 

17 907,5 1 32,55 12,08 1,45 33,03 20,87 

18 928 1 33,27 12,35 1,41 32,32 20,63 

19 930,1 1 35,34 13,42 0,76 32,24 18,23 

20 892,6 1 33,71 12,79 0,78 33,58 19,13 

21 917,7 1 32,3 12,03 4,26 32,68 18,7 

22 947,2 1 31,32 11,64 6,99 31,65 18,38 

23 959,6 1 30,97 11,55 8,94 31,24 17,3 

24 943,4 1 31,52 11,7 7,63 31,64 17,5 
 

 

By using Householder reflections matrix Х was 

transformed into a triangular form (to matrix R = QX).  

The process of transformation ended prematurely.  

Variables х1, х4 was not connected in the model since 

their residual norms decreased to values of about 0.1% of 

the original norms as shown in Table 2 and Table 3. 

Let move converted columns х1 and х4 (with small 

relative residual rates less than 0.01) to the left to the 

column Z.  

As result, we can obtain a system of 4 equations with 

3 columns of free terms (Z, х1 and х4 ) relative to 4 

parameters of the considered model b0 , b2 , b3 , b5  as 

shown in Table 4. 
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Table 2: Data after householder reflections 

№ z = Q'у  x0 x1 x2 x3 x4 x5 

1 -4651,2 -4,8 -153,6 -58,3 -32,1 -174,1 -72,6 

2 -168,7  7,6 1,4 -22,2 8,3 3,2 

3 -18,0  0,7 -1,4  -19,2 18,2 

4 62,9  4,5 6,8  -6,2  

5 -3,9  2,0   -2,5  

6 135,5  -2,4   3,4  

7 5,7  1,6   -2,1  

8 -24,3  0,1   -0,2  

9 -12,4  -0,1   0,1  

10 -1,6  -0,0   -0,0  

11 -4,2  0,2   -0,4  

12 -20,3  0,3   -0,5  

13 21,9  0,5   -0,7  

14 28,9  0,3   -0,4  

15 30,8  -0,1   0,1  

16 20,0  -0,3   0,5  

17 21,8  -1,1   1,7  

18 37,0  -0,6   0,8  

19 20,4  1,0   -1,6  

20 -3,4  -0,3   0,3  

21 3,0  -0,2   0,4  

22 13,8  -0,2   0,3  

23 7,9  0,1   -0,2  

24 1,4  0,2   -0,3  

 

Table 3: Norms 

Output 21691,3 24 23707,1 3461,7 1524,9 30845,7 5617,9 

Residual 24827,4 0 16,928 0 0 31,7126 0 

Relative 0,00114 0 0,00071 0 0 0,00102 0 
 

Table 4: System of equations with a triangular 

matrix 

у x1 x4 x0 x2 x3 x5 

-4651,2 -153,6 -174,1 -4,8 -58,3 -32,1 -72,6 

-168,7 7,6 8,3  1,4 -22,2 3,2 

-18,0 0,7 -19,2  -1,4  18,2 

62,9 4,5 -6,2  6,8   

 

The solution to this system is given in Table 5. 

Explanatory variables are shown in the model x2, x3, x5 . 

Other variables (including у) are expressed through these 

explanatory variables. 
 

Table 5: Inverse matrix and system solution 

Model parameters Inverse matrix 

у x1 x4 x0 x2 x3 x5 

790,78 24,03 67,07 -0,20 0,29 -0,86 -1,97 

9,14 0,65 -0,90    0,14 

8,14 -0,28 -0,60  -0,04 0,01 0,01 

-0,25 0,09 -1,13   0,05 0,01 

5 The results of calculations 
As a result, the following regression models can be 

obtained (together with the coefficients of 

determination): 

у = 790,78 + 9,14х2 + 8,14х3 – 0,25х5 ; R2 = 0,56 

х1 = 24,03 + 0,65х2 – 0,28х3 + 0,09х5 ; R2 = 0,82 

х4 = 67,07 – 0,90х2 – 0,60х3 – 1,13х5 ; R2 = 0,93 
 

Coefficients of determination R2  can be calculated, 

for example, as follows: 
 

𝑅2 = 1 −
||𝒆||

||𝒚|| − 𝑁 ⋅ (�̄�)2
= 1 − 0,4312 = 0,5688 

So we have multicollinear relationships of variables 

х1  and х4  with explanatory variables х2 , х3 , х5  and with 

multiple correlation coefficients 9084,08251,01 ==R  

and  9686,09382,04 ==R , which exceeds the 

closeness of the relationship of the explanatory variables 

with the resultant feature 7542,05686,0 ==yR .  

Note that the matrix of paired correlation coefficients 

rxy does not show (not demonstrate) any effect of 

multicollinearity at once. 

But it turns out that the determinant of this 

correlation matrix is almost zero |rxy| = 0,0000656, that is, 

all explanatory variables are interconnected by a precise 

multicollinear relationship as shown in Table 6.  

So, with the help of QR decomposition of Х 

rectangular matrix it is possible (without first compiling 

a system of normal equations) to obtain least square 

methods’ estimates of the parameters of the regression 

model together with all multicollinear connections. 

 

Table 6: Correlation matrix 

rxy x1 x2 x3 x4 X5 y 

x1 1 0,5817 -0,7796 -0,0065 0,2102 -0,5863 

x2 0,5817 1 -0,2002 -0,0160 -0,1664 0,1259 

x3 -0,7796 -0,2002 1 -0,3694 -0,1748 0,7031 

x4 -0,0065 -0,0160 -0,3694 1 -0,7743 -0,1736 

x5 0,2102 -0,1664 -0,1748 -0,7743 1 -0,1969 

6 Analysis of the stability of the 

obtained results 
We turn to consider a very important problem of the 

stability of the results obtained from some particular 

observations, which have an excessive effect on the 

values of the model parameters. Using a matrix Q you 

can detect all such questionable observations, such as 

observation №1 in the above tables.  

If you delete the observation №1, the values of the 

model parameters will change significantly: 

With observation №1:  

у = 790,78422 + 9,14172х2 + 8,14859х3 – 0,25244х5 ; 

Without observation №1:   

у = 1300,5080 – 34,4492х2 + 1,75898х3 + 2,25143х5 . 

This unpleasant effect is shown in the graphs of 

component effects in Figure 1 (with), Figure 2 (without). 
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Figure 1: Along with observation № 1. 

 

On the graphs empirical points are superimposed on 

theoretical regression lines (calculated values). It helps to 

find out which dependencies are significant and which 

are not. Indeed, it is always possible to choose such 

scales of coordinate axes that all theoretical lines will 

have the same slope in 45.  

The presence of empirical points (or 95% 

confidence bands) will not allow incorrect conclusions in 

this case. 

However, the question arises, how to determine 

such empirical points so that only one variable varies on 

each graph, and the rest is fixed at the average levels? 

 

 

 

 

 
Figure 2: Without observation № 1. 

 

It turns out that this is a problem whose solution is 

insufficiently covered in the literature. Therefore, we 

propose such a solution. 

After determining the parameters of the model, you 

can find the deviation of each observation from the 

theoretical values (residuals): e = y – yp .  

Now, for each observation, you can write down the 

identity: 

iiiii exxbxxbxxbyy +−+−+−+= )()()( 555333222

Members )( kkk xxb −  are called "component effects". 

Sum y  and the corresponding component effect is 

the equation of the theoretical dependence of the 

resultant feature y on one variable xk at the average values 

of the remaining explanatory variables. 

We will fix in identities all variables (except one) 

on average values and we will receive the corrected data 

as the sum of the total mean y , the corresponding 

component effect )( kkk xxb − and the residual: 

.)()(

;)()(

;)()(

55555

33333

22222

exxbyexYY

exxbyexYY

exxbyexYY

p

p

p
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7 Conclusions and further research 
Since the regression analysis does not end only with 

the assessment of the parameters of the model, it is 

necessary to identify all the most influential observations 

and assess their negative contribution. 

Modern mathematical theory offers methods for 

identifying such components and assessing their 

acceptability in the data. These methods are based on the 

previous QR decomposition of the data matrix. 

The extra-large amount of computing work is no 

longer an obstacle in the presence of modern computers. 
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Comparing the results of calculations of multifactor 

regression analysis by the method of QR decomposition 

of rectangular matrices by House-Holder mappings with 

the calculations performed in the StatGraphics package, 

we obtained a 100% match. 

Checking the significance of the parameters of the 

equations by the student’s criterion shows that not all of 

them are significant:  

 

y = 899,649 + 7,59366*x3; 

x1 = 26,1328 + 0,60714*x2 - 0,305855*x3; 

x4 = 67,0703 - 0,906909*x2 - 0,600053*x3 - 1,13156*x5. 

 

In the following, we can consider how the 

procedures for estimating the parameters of the equation 

can be performed in the StatGraphics package. 

Summarizing all the above, as a conclusion, we can 

say that the use of QR decomposition matrices has 

significant advantages over the standard procedure of the 

least squares’ method in the presence of multicollinearity 

of data and is a reliable computational procedure. 
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