Канд. техн. наук О. М. Борисенко¹, д-р техн. наук С. М. Логвінков², д-р техн. наук Г. М. Шабанова¹, д-р техн. наук А. М. Корогодська¹, канд. техн. наук І. А. Остапенко³ (¹НТУ «Харківський політехнічний інститут», м. Харків, Україна; ²ХНЕУ ім. С. Кузнеця, м. Харків, Україна; ³ТОВ «Дружківський вогнетривкий завод», м. Дружківка, Україна)

Розрахунки та аналіз температур та складів евтектик полікомпонентних перетинів системи MgO – Al₂O₃ – FeO – TiO₂

Вступ

Система MgO – Al₂O₃ – FeO – TiO₂ є фізико-хімічною основою для розробки складів периклазошпінельних вогнетривів зокрема для футерівки обертових печей цементного виробництва.

Периклазошпінельні вогнетриви мають низький коефіцієнт термічного розширення виробів, високу стійкість до термомеханічних напружень, високу стійкість до корозії і змін пічної атмосфери та підвищену схильність до утворення захисного шару обмазки [1 – 3].

Футерівка обертових печей виконує низку важливих функцій [4]: вона є трансферною поверхнею, по якій рухається цементний клінкер під час випалу; також вона є поверхнею, що акумулює тепло та передає його матеріалу, що випалюється; і основна – теплоізоляція. Теплоізоляційні властивості футерівки є критерієм її зносу, тому надійність та довговічність перш за все необхідно розглядати з точки зору правильності підбору хіміко-мінерального складу вогнетриву [5].

Оскільки периклазошпінельні вогнетриви, отримані на основі системи MgO – Al₂O₃ – FeO – TiO₂, експлуатують в умовах підвищених температур, в роботі проведено розрахунки та аналіз температур та складів евтектик бінарних, потрійних та четверних перетинів системи з метою прогнозування появи розплаву у відповідних матеріалах та розробки технологічних рішень щодо раціональної кількості розплаву під час спікання і в якості затравки для набору обмазки.

Теоретична частина

Відповідно до раніше проведених досліджень [6 - 9] субсолідусна будова системи MgO – Al₂O₃ – FeO – TiO₂ є складною та змінюється у шести температурних інтервалах: I – до 1141 К та II – 1141 – 1413 К, що пояснюється перебудовою коннод у системах MgO – TiO₂ – FeO та MgO – FeO – Al₂O₃; III – 1413 – 1537 К – вище температури 1413 К стабільний псевдобрукіт, а такою для спрощення розрахунків фазовий перехід анатаз – рутіл приймаємо ~ 1413 К; IV – 1537 – 1630 К – тіаліт стабільний вище 1537 К; V – 1630 – 2076 К – в системі Al₂O₃ – FeO – TiO₂ відбувається перебудова коннод, VI – вище 2076 К – з огляду на те, що

існування сполуки Al₄TiO₈ не доведене, дослідження системи вище даної температури мають рекомендаційний характер і вимагають наступних теоретичних і практичних досліджень.

Вище температури 1141 К незмінними залишаються елементарні тетраедри [9]: MgO – FeO – Mg2TiO₄ – MgAl₂O₄, FeAl₂O₄ – Mg2TiO₄ – FeO – Fe₂TiO₄, FeAl₂O₄ – MgAl₂O₄ – MgAl₂O₄ – MgAl₂O₄ – FeO та FeAl₂O₄ – MgTiO₃ – MgAl₂O₄ – Al₂O₃, до складу яких входять шпінельні фази. Поєднання різних видів шпінелей у складі вогнетриву дає можливість створити матеріали з високими експлуатаційними характеристиками [10, 11].

Для побудови поверхонь ліквідусу полікомпонентних перетинів використовували програму для розрахунків температур евтектик в багатокомпонентних системах Eutektika 1.3.3 [12].

У табл. 1 наведено вихідні дані для розрахунків температур і складів евтектик.

Таблиця 1

Вихідні дані для розрахунку температур і складів евтектик полікомпонентних перетинів системи MgO – Al₂O₃ – FeO – TiO₂

Сполука	Кількість атомів у сполуці, N	Температура плавлення, К
MgO	2	3098 [13]
Al ₂ O ₃	5	2316 [13]
FeO	2	1648 [13]
MgAl ₂ O ₄ (алюмомагнезіальна шпінель)	7	2378 [13]
FeAl ₂ O ₄ (герциніт)	7	2053 [13]
Fe ₂ TiO ₄ (ульвошпінель)	6	1933 [13]
MgTiO ₃ (гейкеліт)	5	1903 [13]
Mg ₂ TiO ₄ (кванділіт)	7	2005 [13]

Характеристики евтектик чотирикомпонентних перетинів $MgO - FeO - Mg_2TiO_4 - MgAl_2O_4$, $FeAl_2O_4 - Mg_2TiO_4 - FeO - Fe_2TiO_4$, $FeAl_2O_4 - Mg_2TiO_4 - MgAl_2O_4 - FeO$ та $FeAl_2O_4 - MgTiO_3 - MgAl_2O_4 - Al_2O_3$ системи $MgO - Al_2O_3 - FeO - TiO_2$ наведено в табл. 2 – 5.

Таблиця 2

No	е Евтектика	Температура	Склад евтектик, мол. %			
JN≌		евтектики, К	X_1	X2	X3	X4
1	MgO – FeO	1539	13,20	86,80	_	
2	$MgO - Mg_2TiO_4$	1912	28,90	71,10	—	-
3	$MgO-MgAl_2O_4\\$	2196	44,00	56,00	_	_
4	$FeO - Mg_2TiO_4$	1546	87,50	12,50	—	_
5	$FeO-MgAl_2O_4$	1618	96,30	3,70	—	_
6	$Mg_{2}TiO_{4}-MgAl_{2}O_{4}$	1941	79,30	20,70	_	_
7	$MgO - FeO - Mg_2TiO_4$	1484	11,35	80,12	8,53	_
8	$MgO-FeO-MgAl_2O_4\\$	1526	12,75	85,24	2,01	_
9	$FeO-Mg_{2}TiO_{4}-MgAl_{2}O_{4}$	1534	86,21	11,67	2,12	_
10	$MgO-Mg_2TiO_4-MgAl_2O_4$	1864	26,60	58,88	14,51	_
11	$MgO-FeO-Mg_2TiO_4-MgAl_2O_4$	1477	11,12	79,30	8,18	1,40

Розрахункові характеристики евтектик перетину $MgO - FeO - Mg_2TiO_4 - MgAl_2O_4$

Таблиця 3

Розрахункові характеристики евтектик перетину $FeAl_2O_4 - Mg_2TiO_4 - FeO - Fe_2TiO_4$

N⁰	Евтектика	Температура	Склад евтектик, мол. %			
		евтектики, К	X_1	X2	X3	X4
1	$FeAl_2O_4 - Mg_2TiO_4$	1845	45,50	54,50	_	_
2	$FeAl_2O_4 - FeO$	1559	10,81	89,19	_	_
3	$FeAl_2O_4 - Fe_2TiO_4$	1796	36,80	63,20	_	_
4	$Mg_2TiO_4 - FeO$	1546	12,50	87,50	—	_
5	$Mg_2TiO_4 - Fe_2TiO_4$	1778	40,80	59,20	_	_
6	$FeO - Fe_2TiO_4$	1501	82,20	17,80	—	_
7	$FeAl_2O_4 - Mg_2TiO_4 - FeO$	1504	7,76	9,70	82,54	_
8	$FeAl_2O_4 - Mg_2TiO_4 - Fe_2TiO_4$	1710	24,51	29,83	45,66	_
9	FeAl ₂ O ₄ – FeO – Fe ₂ TiO ₄	1471	6,26	78,58	15,16	-
10	$Mg_2TiO_4 - FeO - Fe_2TiO_4$	1464	7,54	77,81	14,65	_
11	$FeAl_2O_4 - Mg_2TiO_4 - FeO - Fe_2TiO_4$	1443	5,18	6,54	75,25	13,03

Таблиця 4

No	№ Евтектика	Температура	Склад евтектик, мол. %			
J 1 <u>×</u>		евтектики, К	X_1	X2	X3	X4
1	$FeAl_2O_4 - Mg_2TiO_4$	1845	45,50	54,50	_	_
2	$FeAl_2O_4 - MgAl_2O_4$	1976	76,00	24,00	_	_
3	$FeAl_2O_4 - FeO$	1559	10,81	89,19	_	_
4	$Mg_{2}TiO_{4}-MgAl_{2}O_{4}$	1941	79,30	20,70	_	_
5	$Mg_2TiO_4 - FeO$	1546	12,50	87,50	_	—
6	$MgAl_2O_4 - FeO$	1618	3,70	96,30	_	_
7	$FeAl_2O_4-Mg_2TiO_4-MgAl_2O_4$	1816	40,18	48,34	11,48	_
8	$FeAl_2O_4 - Mg_2TiO_4 - FeO$	1504	7,76	9,70	82,54	—
9	$FeAl_2O_4 - MgAl_2O_4 - FeO$	1546	10,06	2,31	87,62	_
10	$Mg_{2}TiO_{4}-MgAl_{2}O_{4}-FeO$	1534	11,67	2,13	86,20	_
11	$FeAl_2O_4-Mg_2TiO_4-MgAl_2O_4-FeO$	1497	7,41	9,28	1,62	81,69

Розрахункові характеристики евтектик перетину $FeAl_2O_4 - Mg_2TiO_4 - MgAl_2O_4 - FeO_4$

Таблиця 5

Розрахункові характеристики евтектик перетину $FeAl_2O_4 - MgTiO_3 - MgAl_2O_4 - Al_2O_3$

N⁰	Евтектика	Температура	Склад евтектик, мол. %			
		евтектики, К	X_1	X_2	X3	X4
1	$FeAl_2O_4 - MgTiO_3$	1766	32,10	67,90	_	_
2	$FeAl_2O_4 - MgAl_2O_4$	1976	76,00	24,00	_	
3	$FeAl_2O_4 - Al_2O_3$	1928	63,50	36,50	_	_
4	$MgTiO_3-MgAl_2O_4\\$	1849	86,50	13,50	_	_
5	$MgTiO_3 - Al_2O_3$	1804	75,90	24,10	—	-
6	$MgAl_2O_4 - Al_2O_3 \\$	2102	39,90	60,10	—	_
7	$FeAl_2O_4-MgTiO_3-MgAl_2O_4$	1744	28,87	63,30	7,83	-
8	$FeAl_2O_4-MgTiO_3-Al_2O_3$	1714	25,07	57,65	17,28	_
9	$FeAl_2O_4-MgAl_2O_4-Al_2O_3$	1881	52,76	15,74	31,50	_
10	$MgTiO_3-MgAl_2O_4-Al_2O_3\\$	1773	21,60	69,24	9,16	
11	$FeAl_2O_4-MgTiO_3-MgAl_2O_4-Al_2O_3$	1698	23,12	54,64	6,05	16,19

Результати та їх обговорення

Аналіз отриманих результатів показує, що найвищі температури евтектик спостерігаються у перетинах, до складу яких входять одна або більше шпінельних фаз. Поєднання різних типів шпінелей у фазовому складі матеріалу сприяє більш інтенсивному утворенню рівномірної павутинної мікропористої структури у процесі випалу за рахунок різного термічного розширення цих шпінелей. Таку мікроструктуру часто називають термопластичною, тому що вона ефективно гасить ріст тріщин під час різких перепадів температур та забезпечує високу термостійкість матеріалу. Крім того, периклазошпінельні матеріали тільки з MgAl₂O₄ не змочуються розплавом портандцементного клінкеру, а наявність у фазовому складі вогнетриву сполук Fe (II) забезпечує умови набору гарнісажної обмазки.

У перетинах, до складу яких входить FeO (табл. 2 – 4), необхідно ретельно слідкувати за його вмістом. Вільний FeO окиснюється до Fe₂O₃ зі значним збільшенням об'єму, що сприяє руйнуванню цілісності вогнетриву. Спільна присутність MgO і FeO дозволяє формувати неперервний ряд твердих розчинів – магнезіовюститів [13], що визначає умовність евтектик (табл. 2).

У перетину FeAl₂O₄ – MgTiO₃ – MgAl₂O₄ – Al₂O₃ найбільша температура евтектики (табл. 5) серед чотирикомпонентних перетинів системи MgO – Al₂O₃ – FeO – TiO₂. У цьому перетині, як і у FeAl₂O₄ – Mg2TiO₄ – MgAl₂O₄ – FeO, найбільшу температуру має евтектика, розташована на ребрі FeAl₂O₄ – MgAl₂O₄ (алюмагнезіальна шпінель – герциніт). Тобто, для отримання матеріалу з високими експлуатаційними властивостями необхідно коригувати фазовий склад вогнетриву в сторону збільшення FeAl₂O₄ та MgAl₂O₄, але значне збільшення вмісту алюмагнезіальної шпінелі та герциніту може призвести до руйнування структури вогнетриву, що пов'язано зі значним збільшенням об'єму в результаті різноманітних перетворень, які відбуваються у процесі експлуатації матеріалу [14]. Усі перетини, до складу яких входять шпінельні фази: Mg₂TiO₄ – MgAl₂O₄ (1941 K), FeAl₂O₄ – MgAl₂O₄ (1845 K), FeAl₂O₄ – Fe₂TiO₄ (1796 K), Mg₂TiO₄ – Fe₂TiO₄ (1778 K), FeAl₂O₄ – MgAl₂O₄ (1976 K), мають відносно високі температури евтектик. Але вміст шпінельних фаз, як і FeO необхідно чітко регламентувати.

Заключний розділ

Таким чином, проведений розрахунковий аналіз температур і складів евтектик полікомпонентних перетинів MgO – FeO – Mg₂TiO₄ – MgAl₂O₄, FeAl₂O₄ – Mg₂TiO₄ – FeO – Fe₂TiO₄, FeAl₂O₄ – Mg₂TiO₄ – MgAl₂O₄ – MgAl₂O₄ – MgAl₂O₄ – MgAl₂O₄ – Al₂O₃ cuctemu MgO – Al₂O₃ – FeO – TiO₂ підтверджує можливість синтезу периклазошпінельних

вогнетривів з високими експлуатаційними характеристиками в цій системі та надає необхідну технологічну інформацію для цільового керування взаємозв'язком «склад – структура – властивості» під час їх отримання.

Бібліографічний список

1. Guo Z., Palco S., Rigaud M. Reaction Characteristics of Magnesia-Spinel Refractories with Cement Clinker. *International Journal of Applied Ceramic Technology*. 2005. 2(4). P. 327–335. DOI: https://doi.org/10.1111/j.1744-7402.2005.02027.x.

2. Zhou W., Yan W., Ma S., Schafföner S., Dai Y., Li Y. Degradation mechanisms of periclase-magnesium aluminate spinel refractory bricks used in the upper transition zone of a cement rotary kiln. *Construction and Building Materials*. 2020. 121617. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121617.

3. Огнеупоры для промышленных агрегатов и топок. В 2 кн. Кн. 2. Служба огнеупоров / под. ред. И. Д. Кащеева, Е. Е. Гришенкова. Москва : Интермет Инжиниринг, 2002. 656 с.

4. Кащеев И. Д. Эксплуатация огнеупоров в футеровке цементных вращающихся печей. *Новые огнеупоры*. 2015. № 9. С. 25–28.

5. Liu G., Li N., Yan W., Gao C., Zhou W., Li Y. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln. *Ceramics International*. 2014. 40(6). P. 8149–8155. DOI: https://doi.org/10.1016/j.ceramint.2014.01.010.

6. Борисенко О. М., Логвінков С. М., Шабанова Г. М., Остапенко І. А. Геометротопологічні характеристики субсолідусної будови системи MgO – FeO – TiO₂. *Вчені записки THУ імені В.І. Вернадського. Серія: Технічні науки.* 2021. Т. 32 (71). № 1, Ч. 2. С. 45–49. DOI: https://doi.org/10.32838/2663-5941/2021.1-2/08.

7. Борисенко О. М., Логвінков С. М., Шабанова Г. М., Корогодська А. М., Івашура М. М., Івашура А. А. Субсолідусна будова системи MgO – FeO – Al₂O₃. Вісник Національного технічного університету «ХПІ». Серія: Нові рішення в сучасних технологіях. 2021. № 2 (4). С. 59–64. DOI: https://doi.org/10.20998/2413-4295.2021.01.09.

8. Борисенко О. М., Логвінков С. М., Шабанова Г. М., Остапенко І. А., Шумейко В. М. Геометро-топологічні характеристики субсолідусної будови системи MgO – Al₂O₃ – TiO₂. Вісник Національного технічного університету «ХПІ». Серія: Хімія, хімічна технологія та екологія. 2021. № 1 (5). С. 18–23. DOI: https://doi.org/10.20998/2079-0821.2021.01.03.

9. Borisenko O., Logvinkov S., Shabanova G., Mirgorod O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO – Al₂O₃ – FeO – TiO₂. *Materials Science Forum*. 2021. Vol. 1038. P. 177–184. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1038.177.

10. Bahtli T., Aksel C., Kavas T. Corrosion behavior of MgO – MgAl₂O₄ – FeAl₂O₄ composite refractory materials. *Journal of the Australian Ceramic Society*. 2017. 53(1). P. 33–40. DOI: https://10.1007/s41779-016-0006-6.

11. Rodrígueza E., Castilloa G-A., Contrerasa J., Puente-Ornelasa R., Aguilar-Martínezb J.A., Garcíaa L., Gómeza C. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO – CaZrO₃ refractory brick for the cement industry. *Ceramics International*. 2012. 38(8). P. 6769–6775. DOI: https://10.1016/j.ceramint.2012.05.071

12. Программа для расчета температуры эвтектик в многокомпонентных системах. URL: https://chefranov.name/projects/eutektika/ (дата звернення: 25.06.2021).

13. Бережной А. С. Многокомпонентные системы окислов. Киев: Издательство «Наукова думка», 1970. 544 с

14. Шихта для изготовления алюможелезистой шпинели и огнеупоров с использованием алюможелезистой шпинели: пат. 105389 Россия, МПК СО4 В 35/043. Аксельрод Л. М., Пищик О. Н., Кисилева Е. А., Найман Д. А.; заявитель и патентообладатель Общество с ограниченной ответственностью «Группа «Магнезит»». № 2013159119/03; заявл. 30.12.2013; опубл. 20.02.2015, Бюл. № 5.

References (transliterated)

1. Guo Z., Palco S., Rigaud M. Reaction Characteristics of Magnesia-Spinel Refractories with Cement Clinker. *International Journal of Applied Ceramic Technology*. 2005, 2(4), p. 327–335. DOI: https://doi.org/10.1111/j.1744-7402.2005.02027.x.

2. Zhou W., Yan W., Ma S., Schafföner S., Dai Y., Li Y. Degradation mechanisms of periclase-magnesium aluminate spinel refractory bricks used in the upper transition zone of a cement rotary kiln. *Construction and Building Materials*. 2020, 121617. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121617.

3. Ogneupory dlya promyshlennykh agregatov i topok [Refractories for industrial units and furnaces]. V 2 kn. Kn. 2. *Sluzhba ogneuporov* [Service of refractories] / pod. red. I. D. Kashcheeva, E. E. Grishenkova. Moscov : Intermet Inzhiniring, 2002. 656 p. (in Russian).

4. Kashcheev I. D. Ekspluatatsiya ogneuporov v futerovke tsementnykh vrashchayushchikhsya pechey [Operation of refractories in the lining of cement rotary kilns]. *Novye ogneupory* [New refractories]. 2015, no. 9, p. 25–28. (in Russian).

5. Liu G., Li N., Yan W., Gao C., Zhou W., Li Y. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln. *Ceramics International*. 2014, 40(6), p. 8149–8155. DOI: https://doi.org/10.1016/j.ceramint.2014.01.010.

6. Borysenko O. M., Logvinkov S. M., Shabanova G. M., Ostapenko I. A. Heometrotopolohichni kharakterystyky subsolidusnoyi budovy systemy MgO – FeO – TiO₂ [Geometricaltopological characteristics of the subsolidus structure in the MgO – FeO – TiO₂ system]. *Vcheni zapysky TNU imeni V.I. Vernads'koho. Seriya: Tekhnichni nauky* [Scientific notes of TNU named after V.I. Vernadsky. Series: Technical Sciences.]. 2021, vol. 32(71), no. 1(2), p. 45–49. DOI: https://doi.org/10.32838/2663-5941/2021.1-2/08. (in Ukrainian).

7. Borysenko O. M., Logvinkov S. M., Shabanova G. M., Korohodska A. M., Ivashura M. M., Ivashura A. A. Subsolidusna budova systemy MgO - FeO - Al₂O₃ [Subsolidus structure of the MgO – FeO – Al₂O₃ system]. Visnyk Natsional'noho tekhnichnoho universytetu «KHPI». Seriya: Novi rishennya v suchasnykh tekhnolohiyakh [Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology], 2021, no. 2(4),59-64. DOI: https://doi.org/10.20998/2413-4295.2021.01.09. (in Ukrainian).

8. Borysenko O. M., Logvinkov S. M., Shabanova G. M., Ostapenko I. A., Shumejko V. M. Heometro-topolohichni kharakterystyky subsolidusnoyi budovy systemy MgO – Al₂O₃ – TiO₂ [Geometrical-topological characteristics of the subsolidus structure in the MgO – Al₂O₃ – TiO₂ system]. *Visnyk Natsional'noho tekhnichnoho universytetu «KHPI». Seriya: Khimiya, khimichna tekhnolohiya ta ekolohiya* [Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology]. 2021, no. 1 (5), p. 18–23. DOI: https://doi.org/10.20998/2079-0821.2021.01.03. (in Ukrainian).

9. Borisenko O., Logvinkov S., Shabanova G., Mirgorod O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO – Al₂O₃ – FeO – TiO₂. *Materials Science Forum*. 2021, vol. 1038, p. 177–184. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1038.177.

10. Bahtli T., Aksel C., Kavas T. Corrosion behavior of MgO – MgAl₂O₄ – FeAl₂O₄ composite refractory materials. *Journal of the Australian Ceramic Society*. 2017, 53(1), p. 33–40. DOI: https://10.1007/s41779-016-0006-6.

11. Rodrígueza E., Castilloa G-A., Contrerasa J., Puente-Ornelasa R., Aguilar-Martínezb J.A., Garcíaa L., Gómeza C. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO – CaZrO₃ refractory brick for the cement industry. *Ceramics International*. 2012, 38(8), p. 6769–6775. DOI: https://10.1016/j.ceramint.2012.05.071

12. Programma dlya rascheta temperatury evtektik v mnogokomponentnykh sistemakh [Program for calculating the temperature of eutectics in multicomponent systems.]. Available from: https://chefranov.name/projects/eutektika/. [Accessed: 25 June 2021].

13. Berezhnoy A. S. *Mnogokomponentnyye sistemy okislov*. [Multicomponent systems of oxides]. Kiev: Izdatel'stvo "Naukova Dumka", 1970. 544 p. (in Russian).

14. Obshchestvo s ogranichennoy otvetstvennosťyu "Gruppa "Magnezit" [Limited Liability Company "Magnezit Group"]. Shikhta dlya izgotovleniya alyumozhelezistoy shpineli i ogneuporov s ispol'zovaniyem alyumozhelezistoy shpineli [Charge for manufacture of aluminum-ferrous spinel and refractory using aluminum-ferrous spinel]. Inventors: Aksel'rod L. M., Pitsik O. N., Kiseleva E. A., Najman D. A. Appl: 2013-30-12, no. 2013159119/03; publ: 2015-20-02, Bull. no. 5. IPC C04 B 35/043. Patent RF, no. 105389 (in Russian).