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Abstract
The task of the traveling salesman, which is to find the shortest or least costly circular route, is one 
of the most common optimization problems that need to be solved in various fields of practice. The 
article analyzes and demonstrates various methods for solving this problem using a specific example: 
heuristic (the nearest neighbor method, the most profitable neighbor method), metaheuristic (evolu-
tionary algorithm), methods of mathematical programming.
In addition to classic exact methods (which are difficult to use for large-scale tasks based on existing 
software) and heuristic methods, the article suggests using the innovative features of the commer-
cially available MS Excel software using a meta-heuristic base. To find the optimal solution using 
exact methods, the Excel (Solver) software package was used, as well as the specialized GAMS soft-
ware package.
Comparison of different approaches to solving the traveling salesman problem using a practical ex-
ample showed that the use of traditional heuristic approaches (the nearest neighbor method or the 
most profitable neighbor method) is not difficult from a computational point of view, but does not 
provide solutions that would be acceptable in modern conditions.
The use of MS Excel for solving the problem using the methods of mathematical programming and 
metaheuristics enabled us to obtain an optimal solution, which led to the conclusion that modern 
tools are an appropriate addition to solving the traveling salesman problem while maintaining the 
quality of the solution.
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Анотація 
Завдання комівояжера, яка полягає у пошуку найкоротшого або найменш витратного 
кругового маршруту, є однією з найпоширеніших оптимізаційних задач, які потребують 
вирішення в різних сферах практичної діяльності. У статті проаналізовані і на конкретному 
прикладі продемонстровані різні методи вирішення даного завдання: евристичні (метод 
найближчого сусіда, метод найбільш вигідного сусіда), метаевристичні (еволюційний 
алгоритм), методи математичного програмування.
На додаток до класичних точних методів (які для великомасштабних завдань на основі 
наявного програмного забезпечення важко використовувати) і евристичним методам в 
статті запропоновано використовувати інноваційні можливості комерційно доступного 
програмного продукту MS Excel на основі метаеврістіческой бази. Для пошуку оптимального 
рішення точними методами був використаний пакет програм Excel (Solver), а також 
спеціалізований пакет програмного забезпечення GAMS.
Порівняння різних підходів до вирішення завдання комівояжера на практичному прикладі 
показало, що використання традиційних евристичних підходів (метод найближчого сусіда 
або метод найбільш вигідного сусіда) є не складним з обчислювальної точки зору, але не дає 
рішень, які були б прийнятні в сучасних умовах.
Застосування MS Excel для вирішення завдання методами математичного програмування і 
метаевристики дозволило отримати оптимальне рішення, що призвело до висновку про те, 
що сучасні інструменти є підходящим доповненням до вирішення завдання комівояжера при 
збереженні якості рішення.
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INTRODUCTION

Traveling Salesman Problem (TSP) has been in the spotlight since 1960. Its essence is to find the shortest or least 
costly circular route, which includes visiting a certain number of n points (for example, cities), with the start-
ing and ending cities being identical, and each subsequent city included in the ring path once. Usually, a com-
plete transport network is considered, that is, a complete schedule and the shortest distance between each pair  
dij, i, j = 1,2, ..., n).

This problem has a large number of practical applications, especially in the field of transport (for example, the 
disposal of household waste, the delivery of goods from a warehouse, the distribution of bakery products from 
bakeries to individual stores, the planning of school bus routes, the planning of services in companies, delivery 
services, drilling holes for printed circuit boards, computer systems, industrial robot control, circuit optimization, 
network design, and many others).

TSP research made a significant contribution to the development of the theory of computational complexity in 
the early 70s of the XX century. In the thirties of the XX century, this problem repeatedly became an object of 
interest for scientists at Princeton University. In the forties, this problem was studied by statisticians, especially in 
connection with the use in agriculture.

The term “business traveler, traveling salesman” from the point of view of mathematical optimization was first 
used in (Robinson, 1949), in which the shortest circular route of salesmen from Washington to the main cities of 
the other 49 states of the USA was found, and then returning to Washington. Currently, the optimal roundabout 
route through 85.900 nodes is best known (currently the largest TSP). In many other cases, with millions of nodes, 
non-optimal solutions have been found to ensure that the results are 2-3% of the optimal round trip.

Despite the simple statement of this problem, today there is no exact algorithm capable of solving such a large-
scale problem since it belongs to a set of combinatorial problems known as NP - complex problems in which the 
computation time of the best available methods increases more than exponentially to the magnitude of the prob-
lem. There are two ways to solve NP - complex problems. You can use one of the general methods for constructing 
an exponential algorithm, which in most cases can behave like a polynomial (Ball, 1939; Menger, 1931). Well-
known and well-developed exact algorithms can be used to solve TSP, which allows you to quickly and efficiently 
calculate the optimal solution.

The most commonly used methods are the branch and bound method, the decision tree method, dynamic pro-
gramming, and others. However, they are difficult to apply to tasks with a large number of locations. Large-
dimension TSP belongs to the class of decision-making problems for which it is difficult to obtain the optimal 
solution using real-time algorithms. Therefore, in practice, heuristic methods and metaheuristic approaches are 
often used.

Heuristic methods are a sequence of steps that allows you to find a real suboptimal solution (does not guarantee 
complete optimality). These methods, unlike exact methods, do not guarantee to find the optimal solution, but, 
on the other hand, they allow you to calculate a “good” acceptable solution in a relatively short time even in com-
plex problems called suboptimal solutions.

Heuristics, by its nature, offers some special steps to solve a specific problem (Flood, 1956). Metaheuristics are a 
higher-level structure aimed at solving common problems, which form a set of principles and recommendations 
for developing heuristic optimization algorithms.

Therefore, if the exact algorithm cannot be used due to the dimension of the problem, an alternative is to create 
an approximation algorithm or heuristic that will be polynomial. However, we repeat, it does not always lead to 
an optimal solution, that is, it provides a suboptimal solution. 
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Today there are a large number of heuristic algorithms (nearest neighbor, profitable neighbor, gradual increase 
algorithm, Clarke-Wright algorithm, Lin-Kernighan algorithm), and so-called metaheuristic algorithms (evolu-
tionary strategies, memetic algorithms, self-organizing migration algorithm, differential evolution, and others).

1. LITERATURE REVIEW

As noted above, for almost 50 years, TSP has been the focus of the attention of researchers due to its computa-
tional complexity for practical use. Its application includes logistics tasks, code theory, control of industrial robots, 
design of electrical distribution, various practical tasks related to the construction of optimal networks, and oth-
ers. So, the classical problem formulated in (Robinson, 1949) is solved using linear programming. Another task, 
described in (Dantzig, Fulkerson and Johnson, 1954), can be considered as the primary basis for further research 
on the traveling salesman problem.

As early as the sixties in (Bellman, 1960), TSP was used as an example of a combinatorial problem that can be 
solved by dynamic programming. Also, TSP was formulated as an integer programming problem (Miller, Tucker 
and Zemlin, 1960). During this period, another study (Hellmich, 1960) emphasized the close relationship be-
tween the TSP and the linear problem. This article discusses the problem of assigning and creating basic loops 
to obtain a circular route. An important step in solving TSP was the branch and bound method, which was de-
scribed in 1963 in (Little, Murty, Sweeney and Karel, 1963). Then, in the 1970s, was developed a heuristic algo-
rithm to solve TSP (Lin and Kernighan, 1973).

However, to this day, the Salesman Problem has been in the interest of many experts in the field of operations re-
search, mathematics, and artificial intelligence. The TSP solution is often used to test the effectiveness of evolving 
algorithms (Čičková, Brezina and Pekár, 2013).

With the development of computer technology, the problem of finding the optimal solution for large dimensions is 
becoming more realistic and achievable. So, in 1978, six symmetric TSPs with 80 nodes were solved (Miliotis, 1978). 
In 1987, in the paper (Padberg and Rinaldi, 1987) was solved TSP by the method of branches and sections with 
532 nodes. Finally, in 2001, a network of 110 Alpha 500 MHz processors was built with a route connecting 15112 
points in Germany.

In May 2004, the so-called Swedish TSP was created (24 978 points in Sweden). In the calculation, it was used 
with 96 Intel Xeon 2.8 GHz, and it was shown that for calculation using only one computer with the same CPU, it 
will take 84.8 years. Therefore, it remains quite obvious that to solve large-scale tasks on one computer, it is still 
necessary to rely only on suboptimal solutions. Today, this is the maximum task of 85,900 nodes solved by the 
Concorde computer system in 2006.

2. AIMS

In the case of the task of finding the shortest circular path, it is necessary to determine in what order it is necessary 
to go through all the vertices once so that the initial (starting) vertex is simultaneously final and the total length 
of the route traveled is minimal. 

This problem is mentioned in the literature, for example, in (Brezina, Čičková and Gežík, 2012; Čičková, Brezina 
and Pekár, 2008) as the task of finding the shortest circular route. Examples of practical applications of such tasks 
include the disposal of household waste, the delivery of goods from a warehouse, the delivery of bakery products 
to stores, the planning of bus trips, the planning of services in companies, the delivery services, the planning of 
machine work in warehouses, and many others (Pekár, Brezina, Čičková, 2017).

In other words, the goal of finding the shortest circular route is to find the shortest path from the starting point to 
the other upper points of the diagram and return to the starting point, where each vertex can be visited only once. 

http://dx.doi.org/10.21511/dm.18(1).2020.03
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It is known that the number of vertices at distances between all vertices is dij (i, j = 1,2, ... n), and the shortest dis-
tance matrix between all vertices is D = {dij} (i, j = 1,2, .. .n).

The shortest circular path search problem can be formulated as a model of a mathematical programming problem 
with bivalent variables xij ∈ {0,1}, i, j = 1,2, ... n, where if the path is implemented, the value of the variable is 1, 
otherwise, the value of the variable is 0.

The best-known model for finding the shortest circular path uses the Tucker formula, which introduces additional 
conditions to avoid the appearance of cycles:

1 1
min ( , ) .

n n

ij ij
i j

f d x
= =

=∑∑X y ,    (1)

1
1, 1, 2,... , ,

n

ij
i

x j n i j
=

= = ≠∑   (2)

1
1, 1, 2,... , ,

n

ij
j

x i n i j
=

= = ≠∑   (3)

1, 1,2,... , 2,3,... , ,i j ijy y nx n i n j n i j− + ≤ − = = ≠   (4)

{ }0,1 , , 1, 2,... .ijx i j n∈ =   (5)

where yi and yj - any numbers (real numbers assigned to the vertex ui or uj).

Conditions (4) prevent the occurrence of cycles. It is clear from the wording that each model will contain n⋅n bi-
nary variables and n+n+(n–1)⋅(n–1) boundary conditions.

3. METHODS

To solve problems with a large number of vertices, the classical solution to the mathematical programming prob-
lem is not applicable, because it is necessary to check, sort out, an excessively large number of options. Therefore, 
a large number of heuristic methods have been developed for finding the shortest closed path, which provides at 
least a good solution in an acceptable time.

As already mentioned, the following methods can be used to solve research problems: heuristic (nearest neighbor 
method, most preferred neighbor method), mathematical programming methods, metaheuristics methods (evo-
lutionary algorithm and the like).

4. RESULTS

Considering the solution of the traveling salesman problem by heuristic methods, we note that one of the relative-
ly simple to use and fairly easily programmed heuristic methods for solving the traveling salesman problem is the 
nearest neighbor method and its modification, the most favorable neighbor method.

Solving the traveling salesman problem using the nearest neighbor algorithm and, accordingly, the essence of 
the algorithm is to find the nearest place (neighbor) to the selected location i1 , among the possible neighbors, is 
and the achievement of which will be connected at this moment with the route with the smallest possible matrix 
count D={dij}.

This method works with locations included in routes i1, i2, ..., il, denoting many places lying on the traveling sales-
man route (places included in the circular route), such as I={1, 2, ..., n}, and unassigned locations J=I–{i1, i2, ..., il}.

http://dx.doi.org/10.21511/dm.18(1).2020.03
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A short record of the nearest neighbor algorithm is as follows:

• step 1. Let be k=1, I={1, 2, ..., n}, position u1 is starting point, then i=i1=1 and J=I–{i1}={2, 3, ..., n};
• step 2. If k=n, then go to step 4; otherwise, if k < n, in i line of matrix D; in the set J one should find the small-

est element { }min iqq J
d

∈
 and denote it as q;

• step 3. Let be k=k+1 and i=ik=q, then J=J–{q} and you must go to step 2;
• step 4. Accept in+1=1 and complete the calculations.

In this case, the decision is determined by the sequence of places i1, i2, ..., in, in+1.

The full trajectory T of salesman traveler is determined by calculating the rank of the route along with T.

The multiple nearest neighbor algorithm is based on n fold replication of the nearest neighbor algorithm. In this 
case, each subsequent location in the set I is sequentially selected. 

The algorithm substantially eliminates the most significant drawback of the nearest neighbor algorithm, namely, 
the problem of connecting the final and initial points of the desired route.

A specific implementation of the nearest neighbor algorithm can be represented in the following example.

Suppose that the task is to visit eight cities of Slovakia along the minimum route: Banska Bystrica, Bratislava, 
Kosice, Nitra, Presov, Trencin, Trnava, Zilina.

The starting point can be any of them, and after a single visit to each (all), you need to return to the starting point 
(city). In this case, the shortest distances between the individual peaks (cities) dij are given in Table 1.

Table 1. Distance matrix D
Source: Initial data in the author’s statement of the problem.

Matrix D distance 
(km) B.Bystrica Bratislava Košice Nitra Prešov Trenčín Trnava Žilina

Banská Bystrica 0 208 213 119 195 142 166 89
Bratislava 208 0 391 88 403 127 47 200
Košice 213 391 0 302 35 303 349 230
Nitra 119 88 302 0 315 85 46 140
Prešov 195 403 35 315 0 293 361 221
Trenčín 142 127 303 85 293 0 78 73
Trnava 166 47 349 46 361 78 0 151
Žilina 89 200 230 140 221 73 151 0

If the route starts, for example, in Banska Bystrica, the result will be: Banska Bystrica - Zilina - Trencin - Trnava - 
Nitra - Bratislava - Kosice - Presov - Banska Bystrica with a total length of 995 km, as shown in Figure 1.

Another solution to the traveling salesman problem can be obtained using the algorithm of the most profitable 
(preferred) neighbor.

The steps of the most preferred neighbor algorithm are the same as in the nearest neighbor algorithm, but instead 
of matrix D, the frequency matrix E is used, the elements of which form a complete asymmetric graph are deter-
mined by the relation:

( )
1 1

1 .
n n

ij ij ik qj ji
k q

e n d d d d
= =

= − − − −∑ ∑ ; k j≠ , .q i≠    (6)

And, accordingly, for a complete symmetric graph:

( )
1 1

2 .
n n

ij ij ik qj
k q

e n d d d
= =

= − − −∑ ∑ ; k j≠ , q i≠ .  (7)
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The meaning of the coefficients eij is that instead of the direct distances between the points ui  and  uj of the matrix 
D = {dij}, we consider the “environment” of this pair of places.

If eij is high, it is preferable to use other edges starting with uj or ending with uj to be included in the circular path. 
Conversely, in the case of a low value of eij, it is preferable to include hij in the formed circular path.

The algorithm of the most preferred neighbor is identical to the principle of the repeated nearest neighbor algo-
rithm, but the frequency matrix E is used instead of the D matrix.

The algorithm of the most profitable neighbor can be presented for our example with the corresponding form of 
the matrix E, presented in Table 2.

Table 2. Frequency matrix E
Source: Calculation results in a model developed by the authors.

Matrix E B. Bystrica Bratislava Košice Nitra Prešov Trenčín Trnava Žilina
Banská Bystrica 0 –932 –1.251 –1.275 –1.395 –1.097 –1.002 –1.524
Bratislava –932 0 –159 –1.855 –63 –1.549 –2.286 –968
Košice –1.251 –159 0 –502 –3.366 –500 –229 –1.087
Nitra –1.275 –1.855 –502 0 –398 –1.516 –1.925 –1.079
Prešov –1.395 –63 –3.366 –398 0 –580 –133 –1.159
Trenčín –1.097 –1.549 –500 –1.516 –580 0 –1.675 –1.621
Trnava –1.002 –2.286 –229 –1.925 –133 –1.675 0 –1.094
Žilina –1.524 –968 –1.087 –1.079 –1.159 –1.621 –1.094 0

Source: Route developed by the authors.

Figure 1. An example of solving the traveling salesman problem using the nearest neighbor algorithm

http://dx.doi.org/10.21511/dm.18(1).2020.03
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If the path starts again in Banska Bystrica, the result will be the following sequence: Banska Bystrica - Zilina 
- Trencin - Trnava - Bratislava - Nitra - Kosice - Presov - Banska Bystrica, with its other total length, this time 
amounting to 907 km, which Figure 2 illustrates.

Another widely used approach is to solve the traveling salesman problem with mathematical programming meth-
ods. The traveling salesman problem can be formulated as a mathematical programming problem, and then it can 
be solved using, for example, MS Excel.

Next, we consider two ways to solve the traveling salesman problem, namely, using the Solver add-in in MS Excel 
and specialized software GAMS for solving mathematical programming problems. Both methods are practically 
implemented based on the mathematical programming problem.

Both approaches will be described using the previous route as an example.

To solve the TSP problem in the MS Excel spreadsheet processor, you must first prepare the source data. Table 3 
shows a method to determine the source data for the illustrative example that we are considering in the MS Excel.

Source: Route developed by the authors.

Figure 2. An example of solving the TSP problem using the most profitable neighbor algorithm

http://dx.doi.org/10.21511/dm.18(1).2020.03
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Table 3. Source data and auxiliary calculation results in MS Excel
Source: Model developed by the authors.

Сity  
(visited point) B. Bystrica Bratislava Košice Nitra Prešov Trenčín Trnava Žilina Of

Banská Bystrica 0 208 213 119 195 142 166 89

865

Bratislava 208 0 391 88 403 127 47 200
Košice 213 391 0 302 35 303 349 230
Nitra 119 88 302 0 315 85 46 140
Prešov 195 403 35 315 0 293 361 221
Trenčín 142 127 303 85 293 0 78 73
Trnava 166 47 349 46 361 78 0 151
Žilina 89 200 230 140 221 73 151 0

Y 0 6 2 7 0 4 5 3 1

X

0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1

0 4 7 6 2 1 3
–4 0 –5 2 –2 –3 7
1 5 0 7 3 2 4

–6 6 –7 0 –4 –5 –3
–2 2 –3 4 0 7 1
7 3 –2 5 1 0 2

–3 1 –4 3 7 –2 0

In our case (for described example), the task, which is mathematically described before by formulas 1-5, has 72 
decision variables, of which 64 variables represent all existing paths on the graph, and an additional 8 variables 
prevent looping.

Block B11:I19 is reserved for these variables. Each variable is assigned an initial value of 0, while in the block of 
variables B12:I19, the unit indicates that the route is located on a circular path. Also are needed additional formu-
las to find the optimal solution.

To be able to introduce separate restrictions, it is necessary to express the functions of the left side and compare 
them with the coefficients of the right side. Table 4 below lists the constraints and the corresponding formula for 
calculating them for the left side of the equation.

Table 4. Restrictive conditions
Source: Model developed by the authors.

Limiting the conditions under which a route from a node can be used 
once Cell Formula

x12  + x13 + x14+ x15+ x16+ x17+ x18 J12 =SUM(B12:I12)–B12
x21 + x23 + x24+ x25+ x26+ x27+ x28 J13 =SUM(B13:I13)–C13

. . .
x81 + x82 + x83+ x84+ x85+ x86+ x87 J19 =SUM(B19:I19)–I19
x21 + x31 + x41 + x51 + x61 + x71+ x81      B20 =SUM(B12:B19)–B12
x12 + x32 + x42 + x52 + x62 + x72+ x82    C20 =SUM(C12:C19)–C13

. . .
x18 + x28 + x38 + x48 + x58 + x68+ x78 I20 =SUM(I12:I19)–I19

http://dx.doi.org/10.21511/dm.18(1).2020.03
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In our case, we need to calculate the sum of the variables, except for the variables with the same index, so the SUM 
function was used, and then the variable with the same index was subtracted.

In addition to the above limiting conditions, cyclic limiting conditions are also used.

To determine them, cells C22:I28 were calculated; for this, the limit values of the left side were calculated, ob-
tained as the difference between variables yi, yj and xij, multiplied to the number of vertices. 

For example, cells C22=$C$11-C$11+8⋅C13; D22=$C$11-D$11+8⋅D13, ..., I28=$I$11-I$11+8⋅I19.

To simplify this task in Solver, diagonal elements of loop avoidance conditions were included in the limit condi-
tions. However, these restrictions do not cause any changes to the solution.

The final step in preparing the source data is to define an optimization criterion. This criterion should be written 
in the form of formula and placed in the appropriate cell.

In our an illustrative example, the Formula=SUMPRODUCT (B2:I9; B12:I19) is located in cell J2 (see Table 3 
above), and the optimization criterion itself is expressed as the scalar multiplication of the distance matrix (block 
B2:I9) and the variable matrix X (block B12:I19).

Once the initial data has been entered, the Solver optimization module can be activated. After starting DataSolver, 
the user can specify the SolverParameters to indicate the model parameters. Initial, individual Solver parameters 
that require preliminary adjustment, shown in Figure 4, are described in detail below, based on how they are used 
in the problem being solved.

Set Objective - in a given task is the optimization criterion in the cell J2.

ТО - minimization criterion (Min).

By Changing Variable Cells - B11:I19, these cells contain the resulting values at the end of the calculation.

Subject to the Constraints – a set of necessary solution constraints.

Cell Reference - cells B20:I20 and J12:J19, set of left limits.

Relation - type of restriction for all borders is “=” (equal).

Constraint - values are equal to 1. 

Cell Reference - cells C22:I28, also representing left constraint.

Relation - a type of restriction for all borders is “≤” (less or equal).

Constraint - values of restrictions are equal to 7 (number of nodes minus one).

In addition to the above conditions, we determine that the values of B12:I19 are binary. The full form of restrictive 
conditions for the given example is illustrated in Figure 3.

The optimal solution found in the sequence of driving around Banska Bystrica - Presov - Kosice - Zilina - Trencin 
- Trnava - Bratislava - Nitra - Banska Bystrica. The total length of the route shown in Figure 4 is 865 km.
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Source: Model developed by the authors.

Figure 3. Filled form of restrictive conditions for TSP

Source: Route developed by the authors.

Figure 4. General route sequence
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Another possibility of solving the TSP problem is to use specialized software products for solving sets of optimiza-
tion problems. We, in particular, used the GAMS package (Čičková, Brezina, Pekár, 2016).

To describe the problem from the solved example in GAMS, we use the compact form of the mathematical model 
represented by formulas 1-5.

The corresponding program recording code in GAMS is shown in Figure 5.

As a result of the decision in GAMS, we obtain the following sequence of Banska Bystrica - Presov - Kosice - Zilina 
- Trencin - Trnava - Bratislava - Nitra - Banska Bystrica. Moreover, the total length of the route is also 865 km and 
remains the same as was previously shown in Figure 5 above.

Finally, we consider the solution of the traveling salesman problem using metaheuristics (evolutionary algorithm).

Recent versions of MS Excel provide another way to solve the problem, starting with finding solutions that repre-
sent different combinations of numbers from 1 to n. Since the goal of the salesman is to find a route between all 
the peaks, you can use this tool to find a path where the total route is minimal.

Source: Algorithm and program developed by the authors.

Figure 5. Program code in the GAMS software system for TSP solving
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The representation of the source data and the results are shown in Table 5.

Cells K2:K9 reflects the sequence of vertices on the route. The INDEX function is used to calculate the value of 
the objective function from the values from the specified row and column for the selected area. Thus, the initial 
parameters are the data area and the row and column number. In solving the problem, we use this function to find 
the distance between the two vertices of the route.

Table 5. Initial data and the results of solving the traveling salesman problem
Source: Model developed by the authors.

City 
(visited 
point)

B. Bystrica Bratislava Košice Nitra Prešov Trenčín Trnava Žilina Route Summed 
distance

Banská 
Bystrica 0 208 213 119 195 142 166 89 8 230

Bratislava 208 0 391 88 403 127 47 200 6 73
Košice 213 391 0 302 35 303 349 230 7 78
Nitra 119 88 302 0 315 85 46 140 2 47
Prešov 195 403 35 315 0 293 361 221 4 88
Trenčín 142 127 303 85 293 0 78 73 1 119
Trnava 166 47 349 46 361 78 0 151 5 195
Žilina 89 200 230 140 221 73 151 0 3 35
Total 865

Cells L2-L9 represent the distance to the vertex indicated in the cell on the left, that is, the distance between L2 
cells to vertex 5 from the previous vertex on the route (vertex 7), cell L3 - the distance to vertex 3 from vertex 5, 
and so on.

Further, in cell L2, the INDEX function is used with the parameters of area B2:I9, the row number in cell K9, and 
the column number in cell K2. After that, similarly, in cell L3, we determine the INDEX function with domain 
B2:I9, row number in cell K2, column number in cell K3, and so on. 

Finally, we define the target function in cell L10, which is the sum of the individual paths along a circular path, 
i.e. it is (=SUM(L2:L9)).

After completing the preparation of the initial data, the optimization module Solver plugin can be activated. After 
its launch (Data-Solver), the user is prompted to set the Solver Parameters dialog to indicate the parameters of the 
task being solved. The individual initial parameters of the Solution are described in detail below, showed in Figure 
6, which are used in solving the problem.

Set Objective - in a given task is the criterion optimization in cell L10.

To - in the above problem, the minimization criterion (Min).

By Changing Variable Cells - cell areas K2:K9, which contains the final values at the end of the calculation.

Subject to the Constraints - this task does not contain a structural boundary, but it is necessary to determine the 
property of the variables so that they all differ from each other.

Cell Reference - cells K2:K9 containing variable parameters of the task.

Relation - the type of restriction, diff.

Constraint - value not defined.
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It is necessary to set the Evolutionary option in the Select and Solving Method menu since the solution to the 
problem in this example with the diff parameter can be obtained with this value.

As a result, the same solution to the problem was obtained using exact methods. It is set by the sequence of cities 
Zilina, Trencin, Trnava, Bratislava, Nitra, Banska Bystrica, Presov, Kosice. The total length of the salesman route 
also remained the same. Recall that it is calculated by calculating the distances between the tops of the route and 
is the same 865 km.

5. DISCUSSION

A generalized comparison of the results of solving the traveling salesman problem by the various methods con-
sidered by us above is given in Table 6.

Source: Model developed by the authors.

Figure 6. Initial Settings for Configuring Solutions
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Table 6. Results of solving the traveling salesman problem by various considered methods 
Source: Developed by the authors.

Researched and used solution method Solution Route length, km
Excel – precise method Optimal 865
GAMS - precise method Optimal 865
Excel – metaheuristic method Optimal 865
Nearest neighbor – heuristic method Suboptimal 995
The most profitable neighbor - heuristic method. Suboptimal 907

The presented methods were also applied to practical, real-life tasks of large sizes, using the example of 32 cities 
in Slovakia. 

The total length of the optimal route calculated by exact methods (Excel, GAMS) was 1.370 km.

The nearest neighbor method provided a suboptimal solution of 1.975 km, which is 605 km (44.1%) more.

The most profitable neighbor method also showed a suboptimal solution of 1.526 km, which is 156 km (11.4%) 
more than with the optimal solution to the problem.

CONCLUSION

Summing up the above, we can conclude that given the computational complexity of the traveling salesman prob-
lem, its solution by classical methods of optimization in real-time is not rational, therefore, it is advisable to use 
heuristic approaches to solve large-scale problems.

At the same time, the development of new alternative approaches can be achieved by solving sequential tasks that 
are more suitable for practice in terms of complexity, time, and quality of the solution.

A comparison of different approaches to solving the traveling salesman problem using a practical example showed 
that the use of traditional heuristic approaches (the nearest neighbor method or the most profitable neighbor 
method) is not computationally difficult, but does not provide solutions that would be acceptable in modern 
conditions.

The use of MS Excel to solve the problem by mathematical programming and metaheuristics allowed us to obtain 
the optimal solution, which led to the conclusion that modern tools are a suitable complement to solving the trav-
eling salesman problem while maintaining the quality of the solution.
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