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The article deals with the problem of economic adequacy of solving a linear regression problem by the OLS method. The study uses the following definition of
adequacy: a linear regression solution is considered adequate if it not only has correct signs but also correctly reflects the relationship between coefficients of
regression in the population. If in this case the coefficient of determination is greater than 0.8, the solution is considered economically adequate. As an indicator
of adequacy of a linear regression problem solution it is proposed to use a 10 % level of the coefficient of variability (CV) of the regression coefficients. It is shown
that OLS solutions may be not adequate to the solution in the population, although they may be physically correct (with correct signs) and statistically significant.
The mentioned result is obtained by using the artificial data population (ADP) algorithm. The ADP allows generating data of any size with known regression coef-
ficients in the whole population, which can be calculated with the aid of the OLS solution for a very large sample. The ADP algorithm makes it possible to change
the regular component of the influence of the regressors on the response. Besides, the random changes of regressors in the ADP are divided into two parts. The
first part is coherent to the response changes, but the second part is completely random (incoherent). This one allows changing the near-collinearity level of the
data by changing the variance of the incoherent noise in regressors. Studies using ADP have shown that with a high probability the OLS solutions are physically
incorrect if the sample sizes (n) are less than 23; physically correct but not adequate for 23 < n < 400; adequate for n > 400. Furthermore, it is noted that if the
elimination of strongly correlated regressors is not economically justified but is rather a measure of lowering the value of the VIF-factor, the results may be far
from the reality. In this regard, it is stated that the use of the MOLS eliminates the need to exclude strongly correlated regressors at all, since the accuracy of the

MOLS solution increases with an increase in the VIF.
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YK 330.43 (075.8)
JEL Classification: C52
TuscHeHko O. I, Pe3Hik €. B. Memod HalimeHwux keadpamie:
adexksamHicme piwieHb 3adayi niHiliHoi pezpecii 3a HasgHocmi
MynbmuKosniHeapHocmi i 6e3 Hei

Cmammio npucea4eHo npobaemi ekoHOMiYHOI adeksamHocmi pileHHA 3a-
Oavi nikilioi pezpecii memodom HalimeHwux keadpamie (MHK). Bukopucma-
HO MaKe 03Ha4eHHs a0eKsamHoCMI: pilieHHs 3a0a4i pezpecii 88aHaEMbCA
a0eK8aMHUM, AKUW0 BOHO HE MifbKU MAE KOPEKMHI 3HAKU, a U 8ipHO 8i00-
bpaxcae 830EM08IOHOWEHHSA M KoegiyieHmamu pezpecii 8 2eHepanbHiti cy-
KynHocmi (IC). AKkwio npu ybomy KoegiyieHm demepmirayii binewudi 3a 0.8,
PpileHHsA 88aXAEMbCA EKOHOMIYHO A0EKBAMHUM. AK MOKA3HUK 0eK8amHoC-
mi piwerHs 3a0ayi pezpecii 3anponoHosaHo sukopucmamu 10 %-Huli pieeHb
Koedpiyienma sapiabensHocmi KoediyieHmie peapecii. MokazaHo, wo MHK
piteHHa Moxyme 6ymu He adeksamHumu pitueHHio 8 I'C, xoya 6ymu ¢isuy-
HO KOpeKMHUMU (3 BIDHUMU 3HOKAMU) | CMAMUCMUYHO 3HAYYWUMU. 303Ha-

yeHul pesyaemam 6Gy8 ompumaHum 3a AOMOMO2010 aN20PUMMY WMYYHOI

2eHepanbHoi cykynHocmi (artificial data population — ADP). ADP dossonse
2eHepysamu subipku 6y0b-aKo20 po3mipy 3 8idomMumu KoegiyieHmamu pe-
2pecii e ['C, AKi moxcyms 6ymu popaxosaHumu 3a donomozoro MHK piweHHs
0na Oysce senukoi ubipku. Aneopumm ADP 0038014€ 3MiHAMU peaynapHy
KOMMOHeHmy 8r/ugy pe2pecopa Ha 8idzyk. Kpim ybo2o, 8unadkosa cknadosa
pezpecopie 8 ADP po3dineHa Ha 08i yacmuHu. llepwa YacmuHa KozepeHm-
Ha 3MiHaM 8i02yKy, a Opyaa € MOBHICMIO BUNAOKOBOKO (HEKO2EPEHMHOI).
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TontHeHKo A. I, Pe3Huk E. B. Memod HaumeHbwux Keadpamos:
adeksamHocmb peweHuli 3adayu auHeliHoli pezpeccuu
npu MyAbMUKoAAUHEApHOCMU U 6e3 Hee

Cmames nocesujeHa npobeme 3KOHOMUYECKOU G0eKsamHoCmU pewieHus
300a4u nuHeliHoli pezpeccuu memodom HaumeHbWwux Keadpamos (MHK).
B cmamee ucrionb3osaHo credyroujee onpedeneHue adeksamHocmu: peuse-
Hue 3a0a4u pezpeccuu cyumaemcs adexsamHol, ecau OHO He MOsbKO ume-
em KoppeKkmHble 3HAKU, HO U 8ePHO OMPaXaem 83aUMOOMHOWEHUS MeXOy
KoaguyueHmamu pezpeccuu 8 2eHepasbHoli cosokynHocmu (IC). Ecau mpu
3Imom KoaghgpuyueHm demepmuHayuu bonbwe 0.8, peweHue cyumaemcs 3Ko-
HOMUYeCKU a0eK8amHbIM. B Kayecmae nokasamens a0ek8amHoCMu peweHus
300a4u pezpeccuu Mpedsox#eHo ucnonb308amo 10 % yposeHs KosdpuyueHma
gapuabensHocmu Koagguyuermos peepeccuu. lokasaxo, Ymo MHK pewe-
Hus mozym 6bimb HeadeksamHsiMu pewieHuto 8 [C, xomsa Bbimb usuyvecku
KOPPEKMHBIMU (C 8ePHbIMU 3HOKAMU) U CMAMUCMUYECKU 3HAYUMbIMU, YKa-
30HHbIL pesyabmam 6bia NOaYyYeH C MOMOWbIO AN20PUMMG UCKYCCMBEHHOU
2eHepasnbHoli cosokynHocmu (artificial data population — ADP). ADP nossonsem
2eHepuposams 8bI60PKU 1106020 Pa3Mepa C U3BECMHBIMU KO3gduyueHma-
mu peepeccuu 8 C, Komopele Moaym bbime paccyumansl ¢ nomousblo MHK
peweHus 0715 o4eHob bosbwoli ebibopku. Anzopumm ADP nossonsem meHsme
pe2ynapHyto KomnoHeHmy 8030elicmaus pezpeccopos Ha oms3vie. Kpome amo-
20, cryyaliHas cocmaensowas pezpeccopos 8 ADP pasdeneHa Ha 0se yacmu.
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Came ue 003804€ 3MiHIBAMU pigeHb Malixe-KoniHeapHocmi 3a donomo-
2010 3MiHU ducnepcii HekozepeHMHo20 Wymy 8 peapecopax. JocnioxeHHs
30 donomozoko ADP nokazasnu, wo 3 sucokoro limosipHicmio MHK piweHHs
MOXCymb 6ymu (i3u4HO HEKOPEKMHUMU Mpu Po3mipi 8uUbIpKU (n) meHwWwuX,
Hixt 23; i3u4HO KopekmHuMU, ane He adeksamHumu npu 23 < n < 400;
adekgsamHumu rpu n > 400. 3a3Ha4eHO, WO BUKMKYEHHS CUbHO KOPEnok-
Yux pezpecopis, AKWO e HeaunpasoaHo 3 eKOHOMIYHOI MOYKU 30pY, a OUK-
myembca mineku HeobxioHicmio 3meHwumu VIF-gpakmop, moxce npugecmu
00 pesynbmamis, danekux 8id peanbHOCMI. Y 38’a3Ky 3 YUM 3a3HA4eHO, Wo
suKopucmanHa modugikosarozo MHK (MMHK) e3azani 38inbHsae 8i0 Heob-
XIOHOCMI BUK/KOYEHHS CUMBHO KOPEsHKYUX Pe2pecopis, OCKiAbKU MOYHicmb
MMHK minbku 3pocmae 3i 3pocmanHam VIF-goakmopa.

Knrovoei cnoea: mynsmukoniHeapHicme, MHK, MoOentogaHHs 0aHuX, wmyy-
Ha 2eHepasbHa CyKynHicme, (i3u4Ha KopeKMHicmb, adeKk8amHicme.
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MMepsas 4acmb Ko2epeHMHaAA USMEHEHUAM OMKAUKG, 0 8mopas Aensemca
nonHocmelo cyyaliHoli (HexozepeHmHoU). MimeHHo 3mo no3sonsem usme-
HAMb YpoBeHb MOYMU-KOAAUHEAPHOCMU, C MOMOWbIO U3MEHeHUA ducnepcuu
HeKozepeHMHO20 Wyma 8 pezpeccopos. VccredosaHus ¢ nomowbio ADP noka-
3an1u, Ymo ¢ sbicokoli seposmHocmbto MHK peweHus mozym 6bime husuvecku
HeKoppexmHbIMU npu pasmepe 8bI60pKU (1) MeHbLIUX, Yem 23; (hu3udecKu Kop-
PEeKMHbIMU, HO He adeksamHeimu npu 23 < n < 400; adeksamHbimu pu n > 400
OmmeyeHo, YMo UCK/IKOHeHUE CUSIbHO KOPPEnupyroU4ux pe2peccopos, ecau 3mo
HeonpasodaHHO ¢ IKOHOMUYECKOU MOYKU 3peHus, a OUKMyemca mosbKo Heob-
xodumocmeto ymeHbwiume VIF-Gpakmop, moxem rpugecmu K pesynbmaman,
danexum om peanbHOCMU. B c8A3U € 3MUM ommeyeHo, Ymo UCronb308aHUE
moducpuyuposanHozo MHK (MMHK) soobuwe ocgoboxdaem om Heobxodumo-
CMU UCK/IKOYEHUSA CUbHO KOPPENUPYHOWUX Pezpeccopos, MOCKOLKY MOYHOCMb
MMHK monobko pacmem ¢ pocmom VIF-gpakmopa.

Knroueevle cnoea: mynemukonnuHeapHocms, MHK, modenuposaHue 0aH-
HbIX, UCKYCCMBEHHAA 2eHepasnbHas COBOKYMHOCMb, (U3UYecKas Koppekm-
HOCMb, A0EK8AMHOCMb.
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In general, solving the linear regression problem by
the OLS method is clearly divided into two parts [1]. Part 1
is a purely mathematical problem of the approximation of a
response (the goodness of fit problem in the linear regression)
[2-8], which the OLS solves flawlessly. Part 2 is an economic (in
the general sense, physical) task of evaluating the influence of
regressors on the regressand. It is this task that the OLS solves
unsatisfactorily [9-19]. As shown in [1], this issue is related to
an attempt of finding exact solutions to problems by means of
the OLS.

Therefore, it is clear that a method of solving the eco-
nomic problem of linear regression (part 2) must be approxi-
mate but rather accurate. It is precisely such method, the
MOLS, is proposed in [1]. It is shown that the MOLS method
gives a stable and practically unbiased solution to the linear re-
gression problem regardless of the near-collinearity level of the
data used. Unlike the ridge-method, the MOLS gives a negli-
gible bias and does not require optimization of the regulariza-
tion constant.

The MOLS permits to obtain a stable and adequate solu-
tion to the linear regression problem without extracting from
the model strongly correlated regressors, which have to remain
in the model, since they may have different economic content.

In principle, the economic indices can be strictly propor-
tional or even equal, and this should not prevent solving the
economic task of determining the degree of influence of regres-
sors on the response.

Therefore, formally, the method of solving a regression
problem should allow finding solutions even in the case when
two (or more) regressors are simply equal. In this case, the va-

lidity of the method can be verified by the equality of the re-
gression coefficients for the same regressors.

Although it is clear that mathematical methods by them-
selves cannot give recipes for an adequate compilation of a
regression model, at the same time it is necessary to create a
mathematical program that could find an adequate solution to
the economic problem of linear regression under conditions
of the near-collinearity of data. Such a method is presented in
[1]. In this paper, we want to show that the widely used OLS
method is not always suitable for these purposes.

For this purpose, we consider in more details solving the
economic linear regression problem by the OLS method.

All problems that are associated with solving the eco-
nomic problem of linear regression in the presence of near-
collinearity arise when solving the matrix OLS-equation:

XXb=XY < Ab=B8. 1)

Recall that this does not mean the goodness of fit prob-
lem in the linear regression, but the problem of an adequate
estimation of the regression coefficients b; used in the eco-

nomics to quantify the impact of regressors X; on the Y (re-
sponse).

For any degree of the data near-collinearity, the OLS so-
lution to equation (1) is mathematically correct, as shown by
the high accuracy of the approximation (goodness of fit) prob-
lem solving [2-8]. At the same time, the finding of adequate
estimation of the regression coefficients by the OLS method
in the presence of near-collinearity encounters serious difficul-
ties.
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Firstly, the solutions do not always have proper signs, i.e.,
they can be physically incorrect (the 1 problem).

Secondly, physically correct solutions may not corre-
spond to economic suppositions about the power of the influ-
ence of the respective regressors on the response in the popula-
tion, i.e., it may be inadequate (the 2" problem).

General problems of solving linear equations systems of
any level of ill-conditionality are considered in [1], where it is
shown that the codomain of any non-singular square matrix A
consists of two parts: the codomain of physical correctness, D¢
in which all signs of the solution to the equation Ax = B corre-
spond to the content of the problem being investigated, and the
codomain of physical incorrectness D, in which not all the
solution signs have a sense.

If the right-hand side B of the matrix equation (1) be-
longs to D¢, all the solution’ signs correspond to the content of
the problem being investigated, i.e., the solution is physically
correct. If the right-hand side of the matrix equation B € D¢,
then some signs of the solution are necessarily incorrect and all
the solution is physically incorrect [1].

In [1], it is also shown that this property of non-singu-
lar matrix equations is observed at any level of the matrix A
conditioning. It is also shown that with the increasing of the
ill-conditioning level of the matrix A, the area of physical cor-
rectness D¢ is narrowed.

Using the example of a simple economic problem, in [1],
it is shown that the well-conditioned matrix equation of the
second order, which arises in the problem of the sale of two
products, for some values of the parameters of the problem has
an economically incorrect solution. This happens if the right-
hand side B of the matrix equation belongs to the codomain of
physical incorrectness (D) of the matrix.

On the basis of the studies carried out in [1], one can
state that the problems of the OLS method in the presence of
near-collinearity are as follows.

As the ill-conditioning level of the matrix X'X grows with
the data near-collinearity level, the physical correctness codo-
main D narrows.

Under the influence of random errors in the regressors
and response, both D¢ and the right-hand side B are changed.
This leads to changing in the position of the vector B inside
D¢, which makes it possible an exit of the vector B from D¢, It
results in changing some of the signs of the solution, and the
components of the solution increase by the module, the higher
the level of ill-conditioning the more the increase is.

High instability of the OLS method in the presence of
near-collinear data is primarily due to a poor conditioning of
the OLS matrix equation. In this case, the codomain of physi-
cal correctness (D) of the OLS matrix is very narrow and var-
ies significantly with random data changes, enforcing the right
side of the OLS equation to exit out of the codomain of physical
correctness of the OLS matrix.

However, as shown in [1], the most important aspect
of the instability of the OLS method is the method of solving
the matrix equation itself. The OLS uses the exact method of
solving the linear systems (Gauss’ or Cramer’), which is very
unstable under the data near-collinearity.

Numerous studies of solving poorly conditioned equa-
tions [20-29] have shown that exact methods cannot give a so-
lution with acceptable variability, although approximate meth-

ods that would give a solution with acceptable variability and
accuracy, too, do not exist to date.

At present, the best method for finding an approximate
solution to the linear regression problem under the ill-condi-
tioning remains the ridge-regression method [11; 12].

This method gives a stable solution for a not very small
value of the ridge parameter, but its accuracy and stability de-
pend on this parameter value itself. This one leads to the ridge
parameter optimization problem, which is also has been solved
with an accuracy which cannot always be correctly estimated
theoretically. In this regard, in practice, the OLS is used, as be-
fore, in the case when the solution has the correct signs [19].

In this work, first and foremost, it has been shown what
kind of problems can arise when using the OLS in cases where
the OLS-solution has the correct signs. We believe that such
an investigation will allow researchers to decide for themselves
whether they are satisfied with the accuracy given by the OLS,
or there is a need to apply a more precise method, namely, the
MOLS [1].

In the literature, the appearance of unreasonably large
OLS solutions is associated with the poor conditioning of the
OLS matrix in the presence of near-collinearity. As for the rea-
son for the appearance of incorrect signs of the OLS solution,
there is no well-founded opinion on this matter in the literature
[13; 23; 28; 29]. In article [29], the author gives many reasons
for the appearance of incorrect signs in the OLS solutions,
mainly of an economic nature, and provides recommendations
for their elimination. The same concerns works [13; 23; 28],
which consider similar reasons for the possible incorrectness
of OLS solutions but without mentioning the reasons for the
appearance of incorrect signs.

In these works, the methods for eliminating the incor-
rectness of the OLS solution for all the mentioned authors are
practically identical and have an economic direction. However,
it should be taken into account that, as clearly stated in [13],
measures based on economic theory do not always eliminate
the appearance of incorrect OLS solutions, including incorrect
signs. But it remains unclarified what causes exactly lead to the
wrong signs of the OLS solutions.

This question is considered in [1], where it is shown that
both the appearance of very large values in the OLS solution
and the appearance of incorrect signs of the solution are associ-
ated only with the extremely large variability of the method of
solving matrix equation (1).

Namely, due to the high variability of the OLS method,
small changes in the data for not very large sample sizes lead to
significant changes in the solution to the matrix equation (1).

Due to the impact of unrecorded factors, which increas-
es the incoherent noise in the regressors, vector B in (1) may
come out from the codomain of matrix A, namely, D. There-
fore, both the incorrect signs in the solution to the economic
regression problem and the increase of the amplitude of solu-
tions in the presence of near-collinearity are appearing (the 1
problem).

If, despite the influence of random factors, the vector B
remains in D¢, the OLS solution will have true signs and mean-
ingful absolute values. In this case, the solution is perceived by
the researcher as adequate, although it may be not very close
to the solution in the population due to the instability of the
mathematical method itself (the 2" problem).
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With the advent of the first problem, it is clear to every-
one that the solution is not appropriate, and that it is necessary
to take some measures. Basically, these measures include the
removal of some regressors according to a certain principle,
see, e.g., [13; 23; 28]. After this, it is believed that everything
is in order and, after checking for the significance by Student’s
t-test, the solution is used for further research.

Herewith, one does not take into account the fact that
the OLS solution can be unstable even when B € DS, and the
physically correct solution obtained can incorrectly reflect the
relationship between the regression coefficients in the popula-
tion. In this case, the OLS solution may have the correct signs
and be significant by Student’s ¢-test but be inadequate to the
solution in the population. In addition, for another sample from
the same population, some regression coefficients may become
insignificant or have incorrect signs.

In this work it is shown that both problems (physi-
cal incorrectness and inadequacy of solutions) have the same
source — the high instability of solutions of the matrix equation
(1).

Moreover, if the problem of physical incorrectness (the
15t problem) is easily diagnosed, then the problem of the inad-
equacy of physically correct solutions (the 2" problem) does
not manifest itself at all in individual solutions and, as far as the
authors know, has not even been discussed in the literature.

The existence of the problem of the adequacy of physi-
cally correct solutions is shown in this work with the help of
artificial data population (ADP) algorithm proposed in [1] for
simple and multiple linear regression models. The ADP algo-
rithm, which is used in the work for simulating data, allows to
generate linear regressors for a given a priori response.

Recall the basic principles of the ADP. At first,
we set a priory any response Y: Y=a+s*randn. Here,
o and s are the arbitrary numbers, randn(n,1) - the
n-size pseudo-random vector. Based on this response,
we set m regressors Xj, j=1:

=k;*(Y+d;*s*a*randn(n,1) , where, k;=tan(B;* pi/180)

m as follows: X =

is the slope (angular coefficient) of a trend of the simple re-
gression of X;on Y. Accordingly, B; is the angle between this
trend and the OY axis. The angular coefficient k; determines
the linear influence of the regressor X. on the response Y. The
coefficient a allows to change the level of incoherent noise in all
regressors simultaneously. The coefficients d. make it possible
to change the level of incoherent noise in the individual regres-
sors X.. The coefficient s allows to get rid of the dependence of
the parameters of the artificial population on the choice of the
variance of the response (s), which is important for comparing
the simulation results with actual data.

The value k.Y, changes coherently with the response and
depends on the economic law of the influence of the regres-
sor on the response (k). The second term in regressors is the
incoherent noise. With the diminishing of the parameter f;,
the regular influence of the regressor X; on the response ¥ in-
creases. Because of that, the correspondent regression coeffi-
cient b; in the modeled population increases as well. It should
also be noted that while modeling the stochastic regressors, the
pseudo-random function randn(n,1) in (3) restarts for each
replica.

The regressors are consisting of a coherent part that is
generated by regular random changes under the influence of
economic laws that are the same for all objects, the incoherent
part, i.e., random noise, which is a consequence of the influ-
ence on the regressors of unaccounted factors and the regular
part, which accounts a linear impact of the regressor on the
regressand.

The ADP allows to generate data from a limited popula-
tion (a population, which consists of all samples of a given size),
in which it is possible to regulate the values of regression coef-
ficients, by changing the law of the influence of factors on the
response (the regular part of the regressor that contains also
the coherent changes), and the value of the variance of random
noise (the incoherent part of the regressor).

This allows us to investigate various methods of solving
the linear regression problem for variability, depending on the
size of the sample and the level of the regressors’ near-collinear-
ity. The increase or decrease of the level of near-collinearity is
carried out by increasing or decreasing of the incoherent noise
variance.

With the aid of the ADDP, an artificial population of lim-
ited size (a limited population) is simulated. With this ADP in
hand, we investigate in the paper the most common method of
solving the linear regression problems, namely, the OLS.

It has been studied the variability of the OLS solution,
depending on the size of the sample and the level of regres-
sors’ near-collinearity. For this, the level of regressors’ near-
collinearity is estimated by using the VIF-factor .

The presence of an artificial population (ADP), from
which it is possible to take any number of samples of a certain
size, helps us clarify a lot of details related to solving the linear
regression problem.

First of all, this concerns the question of the diagnosis of
multicollinearity [13-19], which is still discussed in the hope of
finding the value of the VIF-factor , which delimits data on mul-
ticollinear and non-multicollinear, although some researchers
believe that multicollinearity is a continuous process for which
the criterial number does not exist [12; 23].

In the paper, data simulations with the help of the ADP
show a high variability of the VIF-factor itself for samples of
any size and for any level of data near-collinearity, which, in
principle, does not imply the existence of a certain criterion
that would distinguish between multicollinear and non-multi-
collinear data.

This means that we not always can find out in advance
whether there is or not the multicollinearity and whether to
take any measures to reduce it or not. This is especially impor-
tant in cases where the VIF-factor is not very large.

For large VIFs it becomes clear, as will be seen further,
that the near-collinearity should occur despite the large vari-
ability of the VIF itself.

There is, however, an opportunity as if to bypass the is-
sue of big VIF if, after solving the regression problem, all signs
of the regression coefficients are correct and all coeficients are
significant by Student’s ¢-test.

In this case, the researcher is compelled to consider the
obtained estimates of regression coefficients to be adequate to
their values in the population. However, it is necessary to take
into account the opportunity that all the correct signs of the
regression coefficients could turn out randomly, and for an-
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other sample, the signs may be incorrect. Therefore, if the criti-
cal value of the VIF-factor were known, the researcher could
make a more informed decision about the possible adequacy or
inadequacy of the estimates obtained.

Since the critical value of the VIF-factor does not exist,
according to our investigation, the researcher is forced to make
a decision only on the basis of Student’s criterion in the case
of correct signs for all regression coefficients. In this regard,
the question arises of the stability of Student’s criterion itself
from sample to sample. Because of this, a study of the variabil-
ity of the ¢-statistic for regression coefficients obtained by the
OLS is conducted in the paper. For this purpose, the variances
of the regression coefficients are calculated by data modeling
with the ADP and by the theoretical formulas obtained for the
normal distribution of the residual error with practically the
same result.

Therefore, the usual linear regression problem has been
solved many times by the OLS method for samples drawn from
the artificial data population (ADP), and each time the ¢-sta-
tistics were calculated for all regression coefficients using the
known standard deviations of the regression coefficients. After
that, the obtained values of ¢-statistics were averaged and their
coefficients of variation were determined.

The ADP data modeling also has allowed us to reveal
a high variability of the values of ¢-statistic both for large and
non-very large samples and to study the variability of the values
of t-statistic depending on the sample size and the level of near-
collinearity and to find the areas of parameters where the use
of the OLS is unacceptable despite the OLS-solutions may be
physically correct, i.e., have all correct signs.

The study of the variability of the ¢-statistics calls into
question the existing methodology for making decisions about
the adequacy of OLS solutions due to the significance of the
regression coefficients and their correct signs received by using
the only one not very large sample.

Further application of the ADP simulation made it pos-
sible to investigate the variability of the regression coefficients
themselves and to find out those ranges of the sample size and
the level of near-collinearity in which the OLS gives an ad-
equate solution. The paper shows that the level of adequacy
depends on the degree of regression coefficients variability,
which should be set by the researcher a priori as a certain value
of their coefficients of variation. For example, the acceptable
value, to our mind, of the critical coefficient of variation may
be: CV =10 %.

Thus, in the present work, we will consider the solution
to the linear regression problem to be adequate to the solution
in the population if the coeflicient of variation of the solution
does not exceed 10 %.

The article also shows that the regression data simula-
tion using the ADP allows estimating the sample size, starting
from which the OLS provides an acceptable accuracy of the
regression coefficients at a given level of random noise in the
regressors, which determines the near-collinearity level of the
regressors.

Note that special attention in these studies is paid to the
study of the variability of the solution to the linear regression
problem with a high level of random noise in the regressors,
i.e., with a low level of near-collinearity up to the practically
non-correlated regressors.

It turned out that weakly correlating regressors with a
high level of random noise in the regressors have an increased
variance due to the random errors, which reduce the regres-
sion coefficient and increase its variability. This one casts doubt
on the expediency of excluding strongly correlating regressors
from the model with the only goal to reduce the level of the
VIE-factor .

The authors agree with [23] in the point that the level
of variability of OLS solutions is associated with the level of
regressors’ near-collinearity, which is determined, as a rule, by
the VIF-factor [8]. In other words, the idea expressed in work
[23] is as follows: the variability of the least squares solution in
a continuous manner depends on the level of near-collinearity
and there is no any critical value that would separate the data
into “multicollinear” and “non-multicollinear”

This assumption contradicts many theoretical works in
which the authors try to find the critical value of the VIF-factor,
e.g., 10 in [24] and 5 in [25], or the condition number of the
OLS matrix, 20 as the critical one [8, p. 130].

Whether or not there is a critical value of a factor that di-
vides data into multicollinear and non-multicollinear ones can
be checked directly from the data generated by the ADP. As an
indicator, we take the VIF-factor.

To do this, we use M = 10* samples from the population
DS5(n, ), that consists of 5 regressors with size n = 10 (small),
n =40 (medium), 7 = 100 (fairly large) and so on, with different
values of the alpha-parameters: 3; 1; 0.9, 0.8; 0.7; 0.6; 0.5; 0.4;
0.3; 0.2; 0.1, 0.01. In this DS5(n, o) we take the following B Ik
{1,1, 5,5, 5} in degrees and d/ {1, 1, 1, 1, 1}. In this case, in the
population, the values of the first two regression coefficients
should be the same and large, the other three should also be the
same but smaller. The variance of the incoherent noise of each
regressor is given by the vector d. In this paper, it is taken the
same for all regressors. The variances of the first two regressors
should be the same, the last three should also be the same but
have a smaller value.

As an example of data simulations, Table 1 shows the
95 % confidence intervals of the VIF-factor, the average values
of the VIF-factor and the coefficient of variation of the VIE-
factor for each a-value and for n = 10.

Mpo6rnemn ekoHomikm Ne 1 (39), 2019

Table 1
Sample size, n = 10; 5 regressors
o (o [ mean VIF Cl,p (%)

3 (1.4,11.7) 36 90.0
1 (1.8;22.3) 6.7 133.1
09 (1.9;27.3) 7.8 1316
038 (2.1;31.8) 838 1220
0.7 (2.4;39.3) 10.8 109.2
0.6 (2.8;49.7) 13.6 1259
0.5 (3.5;69.6) 18.7 133.0
04 (4.8;104.1) 27.7 152.0
0.3 (7.5;177.0) 46.6 229.2
0.2 (16.2; 405.4) 101.0 130.0
0.1 (54.0; 1512.0) 407.0 184.0
0.01 (0.6 10%14.5 10% 3.9-104 119.0
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When the o-parameter decreases, a near-collinearity
arises due to the first two and the last three regressors, in which
the angular coefficients are the same. As the a-parameter in-
creases, the near-collinearity level decreases due to a growth in
the incoherent components of regressors.

When the a-parameter is equal to 3, the regressors prac-
tically do not correlate with each other and their VIF-factor is
close to 1.

In this case, the regressors behave like the orthogonal
ones. On the other hand, when the alpha parameter value is
equal to 0.01, the regressors become near-collinear. In this case,
the VIF-factor is about 10%.

What should be noted first of all is that for a sample of
any size the values of the VIF-factor vary considerably from
sample to sample.

For small samples (n = 10, Table 1), the case of a = 3
really corresponds (as we will see later) to the absence of near-
collinearity, according to the estimate in [24] and our investiga-
tions of mutual correlations in artificial data (ADP). However,
in this case, the VIF-factor can vary within fairly wide limits
from 1.4 to 11.1.

On the other hand, the case of VIF = 10 from this in-
terval, for instance, can be also realized even at much smaller
alphas up to a = 0.3, when, as we will see later, the near-col-
linearity can no longer be considered unimportant.

Thus, for « = 0.3, the 95 % confidence interval is (7.5;
177.0), wherefrom we can see that the probability of finding the
VIF = 10 in the interval (7.5; 10) is significantly less than the
probability of finding the VIF in the interval (10; 177.0). This
probability is small (~ 0.015), but it is not equal to zero.

This means, from the diagnostic point of view, that the
VIF-value obtained in an experiment, e.g., VIF = 10, can cor-
respond both to the case of the absence of near-collinearity,
and the case of its presence. Clearly, this applies not only to the
value VIF = 10. If we obtain in an experiment, e.g., VIF = 5, then
it could happen with o from 3 to 0.4. For these a, the variability
of the VIF-factor is of about (90-150) %.

Thus, a very large variability of the VIF-factor of small
samples does not allow us to speak about the existence of some
specific critical value, which determines the existence or ab-
sence the near-collinearity of regressors in the limited popula-
tion.

Note that the MOLS solutions coincide with good accu-
racy with the OLS solutions for large values of the a.-parameter,
i.e., for small VIFs (~ 1) for samples of any size.

Summing up the above considerations, we can state that
using the ADP and the tables of correspondence between the
VIF and a-parameter, similar to Table 1, one can completely
determine the range of applicability and, most importantly, the
inapplicability of the OLS, which is determined by its possible
inadequacy.

Investigation of the OLS solutions for adequacy. Before
checking the solutions to the linear regression problem for
adequacy, we will discuss the criterion of adequacy of a
solution. As mentioned above, adequacy of a solution, in our
opinion, can be determined by the smallness of the variability
level of the regression coefficients.

Then, the adequacy of the solution to the regression
problem can be determined by setting the level of the coef-
ficient of variation (CV) of the regression coefficients. In the

present work, for this purpose, the 10 % level of the CV is used,
although it is clear that this level may vary depending on the
practical problem being solved.

It should also be added that for the fruitful application
of the results of regression analysis in the economy, besides the
adequacy of solving the regression problem, a sufficiently high
value of the coefficient of determination is also required [26].

The commonly used condition is R2 >0.8 . However, it

should be noted that R? also changes from sample to sample
and, therefore, it is necessary to estimate the coefficient of vari-
ation of R .

It is clear that we cannot calculate the coefficient of vari-

ation of R? for only one sample. But this one can be done ap-
proximately by finding out, using tables similar to Table 1, what
value of the ADP parameter a corresponds to the observed
sample VIF-factor for the given n.

This study also has shown that it is necessary to make a
decision on the significance of regression coefficients, using the
observed value of t-statistic, with caution, since its coefficient
of variation may be unacceptably large.

The Ist and 2nd problems of the OLS. Since the OLS is
essentially the main method for solving the linear regression
problems in practice, consider in detail two aspects of its solu-
tions.

First, (the 1% problem), we consider at which sample sizes
the OLS solution gives, with a given probability, physically cor-
rect solutions, i.e., solutions with correct signs. Assuming the
law of distribution of the regression coefficients is normal and
using a 95 % confidence interval for a regression coefficient,
it is easy to obtain that the condition of the positivity of the
regression coefficients is satisfied, with a probability of 95 %, if
CV < 50% for each regression coefficient.

Really, using a 95 % confidence interval for a regression
coefficient

P(mb—ZSb <b<mb +25b)=0.95, (2)

we can write down (2) via the coefficient of variation
cv =5p / my :

P(1—2CV <b/my, <1+2CV)=0.95. ®3)

We can see from (3) that a regression coefficient will be
positive with a probability of 0.95 % if CV = 0.5. For this, the
error in estimating the regression coefficient is 100 %:

b=mb imb. (4)

Here, m, and s, are estimates of expectation and stan-
dard deviation in the limited population (all samples of size n).

If we want to estimate the regression coefficients more
accurately, e.g., with an accuracy of up to 20 %, then it is neces-
sary that the CV does not exceed 10 %:

CV=O.1:>b:mbiO.2mb. (5)

Second, (the 2" problem), we consider at which sample
sizes the OLS solution gives, with a given probability, adequate
solutions, i.e., solutions, which correctly reflects the relation-
ships between the coefficients of regression in the population.
In this study, we believe this is the case if CV <10 %. Although,
depending on the economic problem being solved, a 20 % error
in estimating the regression coefficients may be too large.
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These two problems to research, we consider the OLS
solutions for different sample sizes with different levels of re-
gressors’ near-collinearity, namely, according to above consid-
erations: a = 3 (no collinearity, VIF ~ 1), a = 0.5 (weak col-
linearity, VIF ~ 10), a= 0.1 (medium collinearity, VIF ~ 100),
o = 0.01 (strong collinearity, VIF ~ 10%).

Tables 2-3 show the solutions of the 5-factor linear re-
gression model obtained by the OLS for data taken from the
DS5(n, a) population for different values of # and a.. With such
values of the DS5(n, «) parameters, the first two and last three
regression coefficients have to be equal in the n-size limited

population; their variances and coefficients of variation have
to be the same inside each group but different between groups;
the regression coefficients in the first group are more in abso-
lute value.

Absence of collinearity (VIF~1). Let us now consider
the results of solving a linear regression problem using the OLS
method given in Table 2 for the case of absence of the near-col-
linearity between the regressors (VIF~1, a = 3) for different val-
ues of the sample size (#). Samples was drawn from DS5(n, )
with parameters §; ={1,1,5,55}and d; ={1,1,1,1, 1}.

Table 2
OLS solutions under no collinearity (a =3, VIF~1)
One solution b, b, b, b, b, b,
n=10° VIF=1.03 9.6377 41122 4.0367 0.8202 0.8142 0.8240
Theoretical t 41274 88.26 86.44 87.87 87.34 8830
n =106, VIF=1.03 9.6472 4.0767 4.1042 0.8177 0.8181 08116
Theoretical t 1307.79 275.86 278.08 277.44 277.63 275.58
Simulation, n=1 0, CIVIF.0,95 = (1 41, 11 45), tC =277
meanb; 9.5944 4.1536 4.0491 0.8332 0.8193 0.8251
Vo, 9% 40.49 189.51 194.01 188.62 186.71 186.50
R?=0.69, CVy, =268 %; F =399, CVp =199 %; Fo o5 =626. T =0.5; CV; =210%
Simulation, n=10; CIVIF.0,95 = (1 .07;1 63), tC =2.03
meanb; 9.6319 4.0994 40414 0.8288 0.8278 0.8079
Vo, 0% 13.13 62.05 64.14 61.65 61.67 62.68
R?=043, CV,, =268 %; F =5.65, CVp =49%; Fy o5 =249, T =1.6; CV, =62%
Simulation, n=60; Clyr g o5 =(1.06;1.41); t =201
meanb; 9.6406 4.1335 4.1030 0.8141 0.8132 0.8143
Vo, 9% 10.5236 49.4922 50.0838 49.6141 493576 49.9902
R?=0.40, CVi, =240 %; F =7.84, CVp =42 %; Fo o5 =239, T =2.0; CV, =50 %
Simulation, N=100; Clyr ¢ o5 =(1.0417;1.2630); t. =199
meanb; 9.6483 4.0762 4.0855 0.8194 0.8171 0.8132
CVp, 9% 7.84 37.35 37.48 37.29 37.91 37.41
R?=038, (V,, =19.8 %; F=12.25, CVr =32 %; Fyg5 =249, T =2.7; CV, =37 %
Simulation, 1=1000; Cly .05 =(1.03;1.07); t.=1.96
meanb; 9.6441 4.0952 4.0848 0.8166 0.8160 0.8168
Vo, 9% 243 11.37 11.50 11.44 11.51 11.41
R?=038, CVi, =19.8 %; F=112.17, CVr =11%; Fyg5 =2.22 T=8.7; CV, =11%
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Due to the consistency property of the OLS solutions,
the coefficients of the regression of a sample tend in probability
to regression coefficients in the population if n — co. Similarly,
for cross-sectional data drawn from an n-size limited popula-
tion, the average from sample to sample value of the regression
coefficients also tends in probability to the regression coeffi-
cients in the whole population with the number of repetitions
M — oo,

This property is shown in Table 2, the first two lines of
which represent usual OLS solutions for large samples, namely
n=10% and n = 10° We see that the solutions for n = 10° and
n = 10° are statistically identical and any of them can be taken
as a solution in the population. On the other hand, the averag-
ing of the multiple repeated OLS solutions for a sample size of
n =10 (the number of repetitions is M = 10%) also leads to a
statistically close result with the first two rows.

Thus, we can get an estimate of the solution (regression
coefficients) in the population DS5(n, a) for given n and a us-
ing the OLS solution either with samples of large size or by re-
peating samples of the same size (n)many times.

To get, however, the dispersion of the regression coef-
ficients (bj) and calculate their coefficients of variation (CVj),
as well as the average values and coefficients of variation of the
regression parameters (R> - coefficient of determination, F —
Fisher’s statistic, ¢ — Student’s statistic and others, if necessary,
including the VIF) for samples of a given size (n), it is necessary
to use many times (M = 10* in our investigation) data genera-
tion with the aid of the algorithm DS5(#, o). The results of such
calculations for the case of the absence of near-collinearity
(o = 3, VIF ~ 1) for different sample sizes are shown in Table 2.

Analysis of the results shown in Table 2 can be summa-
rized as follows:

A. The mean values of the solutions (regression coef-
ficients) of the regression problem with M-times resampling
from DS5(n, a) for a given value of parameters (n, «) coincide
in probability with the solution for one very large sample drawn
from DS5(n, ) for n = 10°. This means that we can determine
with any accuracy the regression coefficients in a limited popu-
lation with any parameters with the aid of the same algorithm
DS5(n, ).

B. In the absence of a near-collinearity (VIF~1), the
OLS solution gives physically correct solutions (CV < 50 %) for
samples only larger than 60. For these cases, with a probability
of 95 %, all regression coefficients will be positive and can be
Student’s significant but maybe not adequate. As can be seen
from the calculations in Table 2, the OLS solutions become ad-
equate (and statistically significant) starting with sample size
more than 1000. It should be added that with small samples
(n < 60), with a probability of 95 %, the researcher will not re-
ceive even just a physically correct solution, i.e., a solution with
correct signs.

However, if we look at the values of the coefficient of de-
termination (R?), we will see that its value increases with sam-
ple size decreasing and becomes quite acceptable for n < 10. If,
at the same time, in the experiment, randomly, all solutions of
the OLS will have the correct signs and will be significant, then
the researcher may mistakenly consider the solution to the re-
gression problem to be economically correct.

C. With a sample size increase, the coefficient of deter-
mination decreases in average. As can be seen from Table 2,

for n = 10 the coefficient of determination is of a moderate
effect size [26], (R? = 0.69, (V2 =26.8 % ), i.e., more or less
acceptable. Already for n = 40, it is of a low effect size [26] (R 2
=043, CV,2 =26.8%), i.e., unacceptable from an economic
point of view. The same issue holds for larger samples, which
means that in the absence of near-collinearity, for whatever
size of the sample, the solution to the linear regression problem
cannot be useful in economic analysis (a very small coefficient
of determination indicates a small regular effect of regressors
on the response).

It should be noted that a decrease in the coefficient of
determination with an increase in the sample size is not related
to the solution method but is only due to the presence of large
non-coherent noise in the regressors.

Summarizing the above results, we can draw the follow-
ing inference: solving the linear regression problem with non-
correlating stochastic regressors does not have an economic
sense, no matter what method we use.

This allows to make another conclusion: a real linear re-
gression problem under near-collinearity should not be reduced
to no-correlated regressors by discarding a part of strongly cor-
related regressors without an economic necessity.

Medium collinearity (VIF~100, a= 0.1). Let us further
consider what happens to the OLS solution with an increase in
the level of near-collinearity. In Table 3, we consider the prop-
erties of the least squares solution with a medium level of near-
collinearity (o = 0.1, VIF~100) using the same parameters of
DS5(n, a).

From the calculations given in Table 3 we can draw the
following conclusions:

A. With a decrease in incoherent noise in the regressors
(with increasing the VIF-factor) under the same economic laws
(the same B; angular coefficients), the influence of the regres-
sors on the response increases (the regression coefficients b,
increase in the population).

B. With an increase in the collinearity level, the possibil-
ity of obtaining an adequate solution to the linear regression
problem by the OLS method opens up. We see from Table 3
that with a VIF ~ 100 the OLS solutions are adequate starting
with the sample size of 400.

C. The coefficient of determination (R?) remains high (~
0.95) for all sample sizes. Such a situation with the coefficient
of determination opens up the possibility of obtaining an eco-
nomically adequate solution to the regression problem by the
OLS method using a sample size larger than 400. In this case,
the value of ¢-statistics and its variability for all regression coef-
ficients is also quite acceptable.

Considering the above results, we can draw the following
inference: a solution to the linear regression problem for weak-
correlating stochastic regressors can be adequate and have an
economic sense when using samples larger than ~ 400.

In the range of sample sizes from ~ 23 to ~ 400, an OLS
solution may have correct signs and be statistically significant
but inadequate. Such a solution may not correspond to the rela-
tionship between regression coefficients in the population and
some of the solution’s components may be insignificant.

For samples smaller than 23, the OLS method is likely to
give a physically incorrect solution, i.e., a solution with wrong
signs.
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Table 3
OLS solutions under medium collinearity ( o. = 0.1, VIF~100)
One solution b, b, b, b, b, b
n =105 VIF=1.03 0.0246 11.3827 11.4061 2.2942 2.2615 2.3089
Theoretical t 11.46 156.32 157.28 157.87 155.57 159.15
Simulation, n=10; Clyg o5 =(73;1730); t =277
meanb; 0.0291 11.3771 11.6084 2.2865 2.2456 2.2901
CVbj %1073 1.3334 0.1175 0.1137 0.1166 0.1156 0.1162
R%=0.9989, (Vo2 =012 %; F =1832, CVp =223 %; Fo5=6.26, t =0.9; CV; =115%
Simulation, n=23; Clyrg95 =(64;327); t.=2.11
mean bj 0.0298 11.4726 11.2944 2.2905 2.2782 2.2960
CVbj % 565.49 50.36 51.15 50.19 49.50 50.61
R%=0.9983, (Vo =0.08 %; F =2497, CVp =53 %; Fy o5 =281, t =2,0; CV, =50 %
Simulation, n=400; Clyrg 95 =(75;106); t.=1.97
meanb; 0.0299 11.4132 11.4358 2.2801 2.2870 2.2815
CVbj % 114.16 10.19 10.03 10.02 10.10 10.03

R?=0.9980, CV,, =0.02 %; F=4-10%, CVp =10 %; Fy o5 =224, T =10; CV, =10 %

In addition, it is necessary to take into account the fact
that there already exists a method for solving a linear regres-
sion problem adequately under any degree of near-collinearity
of the regressors (see [1]).

Conclusions. Summing up the study of the applicability
of the OLS in economic research, we can note the following.

A. In the paper, a new algorithm for modeling data
(ADP), which constitute a population of limited size with an
adjustable level of near-collinearity of the regressors and their
influence on the response, is used. This algorithm does not use
predefined regression coefficients in the population. This one
makes it possible to correctly simulate a multiple regression
of any dimension and near-collinearity level. This issue fun-
damentally distinguishes the ADP from the standard method
[27], which, as shown in the article, cannot be applied for simu-
lating multiple regression problems at all.

B. The mathematical and economic correctness of the
data modeling algorithm (ADP) has been justified. This model-
ing takes into account a regular influence on the response of the
regressors and not a regular but coherent influence, which is a
consequence of economic laws, as well as a random (incoher-
ent) noise in regressors, which is a consequence of the influ-
ence on the regressors of random factors.

C. With the help of the ADP, the variability of OLS solu-
tions (CVbj ) is investigated depending on the sample size and
the level of near-collinearity of the data (VIF), as well as the
variability of the VIF itself and the most important characteris-
tics of the regression problem: the coefficient of determination

(R?), t- and F-statistic. High variability of these parameters, es-
pecially the VIF, has been found.

D. Due to the high variability of the VIF, it is concluded
that there is no critical value for this parameter, which divides
the data into multicollinear and non-multicollinear ones.

E. Due to the fact that the VIF value found from the re-
sults of observations can vary greatly from sample to sample,
a qualitative scale of the level of collinearity of data is proposed,
namely: “no collinearity’, VIF ~ 1; “weak collinearity’;, VIF ~ 10;
“medium collinearity’, VIF ~ 100 and “strong collinearity’,
VIF ~ 10% These values of the VIF-factor correspond approxi-
mately to the following values of the a-parameter in the ADP
algorithm: 3; 0.5; 0.1 and 0.01.

The tables like Tables 1-3 for the given sample size, allows
determining to which of these four cases the observed data are
relating and to approximately estimate, using the ADP with
corresponding a-parameter, the statistical characteristics of
the population, from which, presumably, data were extracted.

E. A qualitative scale of the level of conformity of a math-
ematical solution to a linear regression problem to its economic
meaning is proposed: a solution is physically incorrect (not all
signs of the solution are correct); a solution is physically correct
but not adequate; a solution is adequate; a solution is economi-
cally adequate.

G. A quantitative scale of the level of conformity of a
mathematical solution to a linear regression problem to its
economic meaning is proposed: a solution is physically incor-
rect with a probability of 0.95 if the coefficient of variation of
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the solution is more than 50 %; a solution is physically correct
but not adequate (with the same probability) if the coefficient
of variation of the solution is less than 50 % but greater than
10 %; a solution is adequate (with the same probability) if the
coefficient of variation of the solution is less than 10 % (solution
error is less than 20%); a solution is economically adequate if it
is adequate and R> > 0.8 .

H. The variability of the OLS solution to the 5-factors
regression problem in the absence of data collinearity (VIF ~ 1,
o = 3) is investigated. It is shown that in this case, solutions to
the regression problem with any sample size cannot be used
in economic studies either due to a large CV of the solution
(for small samples) or due to a small R? (for large samples).
Thus, in some cases, the OLS solution can be physically correct
and even adequate but have a small R? i.e., to be economically
inadequate.

L. It is noted that with an increase in the near-collinearity
level it becomes possible to correctly use the OLS solution in
the economy. The solutions become economically adequate,
starting with the sample size of ~ 400. With sample sizes from
~23 to ~ 400, an OLS-solution may be physically correct and
significant but not adequate, which means that the solution
may be far from the solution in the population.

J. In the case of a “strong” near-collinearity (VIF ~ 10%
o = 0.01), an OLS solution and its properties practically do not
differ from the case of the “medium” near-collinearity (VIF ~
100).

Summing up the results of the study of the 5-factor re-
gression model DS5(n, «), it can be stated that the OLS is likely
to give an inadequate solution for sample sizes smaller than ~
400.

Physically correct OLS-solutions for samples ranging in
size from ~23 to ~ 400 create the illusion of economically cor-
rect solutions, but, in fact, the solutions obtained may be far
from the solution in the population. For samples smaller than
~ 23, the OLS with a high probability gives a physically incor-
rect solution (with incorrect signs).

Note that the properties of the OLS solution do not
change significantly depending on the number of regressors:
the qualitative picture remains the same.

In connection with the foregoing, the authors believe
that the conducted research is sufficient to show the necessity
of using the MOLS [1] instead of the common OLS, especially
because the MOLS only improves its accuracy with the growth
of the regressors near-collinearity level and eliminates the need
for removing strongly correlated regressors at all.
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