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адекватность решений задачи линейной регрессии  

при мультиколлинеарности и без нее
Статья посвящена проблеме экономической адекватности решения 
задачи линейной регрессии методом наименьших квадратов (МНК). 
В   статье использовано следующее определение адекватности: реше-
ние задачи регрессии считается адекватной, если оно не только име-
ет корректные знаки, но и верно отражает взаимоотношения между 
коэффициентами регрессии в генеральной совокупности (ГС). Если при 
этом коэффициент детерминации больше 0.8, решение считается эко-
номически адекватным. В качестве показателя адекватности решения 
задачи регрессии предложено использовать 10 % уровень коэффициента 
вариабельности коэффициентов регрессии. Показано, что МНК реше-
ния могут быть неадекватными решению в ГС, хотя быть физически 
корректными (с верными знаками) и статистически значимыми. Ука-
занный результат был получен с помощью алгоритма искусственной 
генеральной совокупности (artificial data population – ADP). ADP позволяет 
генерировать выборки любого размера с известными коэффициента-
ми регрессии в ГС, которые могут быть рассчитаны с  помощью МНК 
решения для очень большой выборки. Алгоритм ADP позволяет менять 
регулярную компоненту воздействия регрессоров на отзыв. Кроме это-
го, случайная составляющая регрессоров в ADP разделена на две части. 
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мультиколінеарності і без неї
Статтю присвячено проблемі економічної адекватності рішення за-
дачі лінійної регресії методом найменших квадратів (МНК). Використа-
но таке означення адекватності: рішення задачі регресії вважається 
адекватним, якщо воно не тільки має коректні знаки, а й вірно відо-
бражає взаємовідношення між коефіцієнтами регресії в генеральній су-
купності (ГС). Якщо при цьому коефіцієнт детермінації більший за 0.8, 
рішення вважається економічно адекватним. Як показник адекватнос-
ті рішення задачі регресії запропоновано використати 10 %-ний рівень 
коефіцієнта варіабельності коефіцієнтів регресії. Показано, що МНК 
рішення можуть бути не адекватними рішенню в ГС, хоча бути фізич-
но коректними (з вірними знаками) і статистично значущими. Зазна-
чений результат був отриманим за допомогою алгоритму штучної 
генеральної сукупності (artificial data population – ADP). ADP дозволяє 
генерувати вибірки будь-якого розміру з відомими коефіцієнтами ре-
гресії в ГС, які можуть бути розрахованими за допомогою МНК рішення 
для дуже великої вибірки. Алгоритм ADP дозволяє зміняти регулярну 
компоненту впливу регресора на відгук. Крім цього, випадкова складова 
регресорів в ADP розділена на дві частини. Перша частина когерент-
на змінам відгуку, а друга є повністю випадковою (некогерентною). 

UDC 330.43 (075.8)
JEL Classification: C52 

Ordinary least squares: the Adequacy of Linear Regression Solutions  
under Multicollinearity and without it

 2019 Tyzhnenko A. G., Ryeznik Y. V.
UDC 330.43 (075.8)
JEL Classification: C52 

Tyzhnenko A. G., Ryeznik Y. V.
Ordinary least squares: the Adequacy of Linear Regression Solutions under Multicollinearity and without it

The article deals with the problem of economic adequacy of solving a linear regression problem by the OLS method. The study uses the following definition of 
adequacy: a linear regression solution is considered adequate if it not only has correct signs but also correctly reflects the relationship between coefficients of 
regression in the population. If in this case the coefficient of determination is greater than 0.8, the solution is considered economically adequate. As an indicator 
of adequacy of a linear regression problem solution it is proposed to use a 10 % level of the coefficient of variability (CV) of the regression coefficients. It is shown 
that OLS solutions may be not adequate to the solution in the population, although they may be physically correct (with correct signs) and statistically significant. 
The mentioned result is obtained by using the artificial data population (ADP) algorithm. The ADP allows generating data of any size with known regression coef-
ficients in the whole population, which can be calculated with the aid of the OLS solution for a very large sample. The ADP algorithm makes it possible to change 
the regular component of the influence of the regressors on the response. Besides, the random changes of regressors in the ADP are divided into two parts. The 
first part is coherent to the response changes, but the second part is completely random (incoherent). This one allows changing the near-collinearity level of the 
data by changing the variance of the incoherent noise in regressors. Studies using ADP have shown that with a high probability the OLS solutions are physically 
incorrect if the sample sizes (n) are less than 23; physically correct but not adequate for 23 < n  < 400; adequate for n  > 400. Furthermore, it is noted that if the 
elimination of strongly correlated regressors is not economically justified but is rather a measure of lowering the value of the VIF-factor, the results may be far 
from the reality. In this regard, it is stated that the use of the MOLS eliminates the need to exclude strongly correlated regressors at all, since the accuracy of the 
MOLS solution increases with an increase in the VIF. 
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Саме це дозволяє змінювати рівень майже-колінеарності за допомо-
гою зміни дисперсії некогерентного шуму в регресорах. Дослідження 
за допомогою ADP показали, що з високою ймовірністю МНК рішення 
можуть бути фізично некоректними при розмірі вибірки (n) менших, 
ніж 23; фізично коректними, але не адекватними при 23 < n < 400;  
адекватними при n  > 400. Зазначено, що виключення сильно корелюю-
чих регресорів, якщо це невиправдано з економічної точки зору, а дик-
тується тільки необхідністю зменшити VIF-фактор, може привести 
до результатів, далеких від реальності. У зв’язку з цим зазначено, що 
використання модифікованого МНК (ММНК) взагалі звільняє від необ-
хідності виключення сильно корелюючих регресорів, оскільки точність 
ММНК тільки зростає зі зростанням VIF-фактора. 
Ключові слова: мультиколінеарність, МНК, моделювання даних, штуч-
на генеральна сукупність, фізична коректність, адекватність.
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Первая часть когерентная изменениям отклика, а вторая является 
полностью случайной (некогерентной). Именно это позволяет изме-
нять уровень почти-коллинеарности, с помощью изменения дисперсии 
некогерентного шума в регрессоров. Исследования с помощью ADP пока-
зали, что с высокой вероятностью МНК решения могут быть физически 
некорректными при размере выборки (n) меньших, чем 23; физически кор-
ректными, но не адекватными при 23 < n < 400; адекватными при n > 400 
Отмечено, что исключение сильно коррелирующих регрессоров, если это 
неоправданно с экономической точки зрения, а диктуется только необ-
ходимостью уменьшить VIF-фактор, может привести к результатам, 
далеким от реальности. В связи с этим отмечено, что использование 
модифицированного МНК (ММНК) вообще освобождает от необходимо-
сти исключения сильно коррелирующих регрессоров, поскольку точность 
ММНК только растет с ростом VIF-фактора.
Ключевые слова: мультиколлинеарность, МНК, моделирование дан-
ных, искусственная генеральная совокупность, физическая коррект-
ность, адекватность.
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In general, solving the linear regression problem by 
the OLS method is clearly divided into two parts [1]. Part 1 
is a  purely mathematical problem of the approximation of a 
response (the goodness of fit problem in the linear regression) 
[2-8], which the OLS solves flawlessly. Part 2 is an economic (in 
the general sense, physical) task of evaluating the influence of 
regressors on the regressand. It is this task that the OLS solves 
unsatisfactorily [9-19]. As shown in [1], this issue is related to 
an attempt of finding exact solutions to problems by means of 
the OLS. 

Therefore, it is clear that a method of solving the eco-
nomic problem of linear regression (part 2) must be approxi-
mate but rather accurate. It is precisely such method, the 
MOLS, is proposed in [1]. It is shown that the MOLS method 
gives a stable and practically unbiased solution to the linear re-
gression problem regardless of the near-collinearity level of the 
data used. Unlike the ridge-method, the MOLS gives a negli-
gible bias and does not require optimization of the regulariza-
tion constant.

The MOLS permits to obtain a stable and adequate solu-
tion to the linear regression problem without extracting from 
the model strongly correlated regressors, which have to remain 
in the model, since they may have different economic content. 

In principle, the economic indices can be strictly propor-
tional or even equal, and this should not prevent solving the 
economic task of determining the degree of influence of regres-
sors on the response. 

Therefore, formally, the method of solving a regression 
problem should allow finding solutions even in the case when 
two (or more) regressors are simply equal. In this case, the va-

lidity of the method can be verified by the equality of the re-
gression coefficients for the same regressors.

Although it is clear that mathematical methods by them-
selves cannot give recipes for an adequate compilation of a 
regression model, at the same time it is necessary to create a 
mathematical program that could find an adequate solution to 
the economic problem of linear regression under conditions 
of the near-collinearity of data. Such a method is presented in 
[1]. In this paper, we want to show that the widely used OLS 
method is not always suitable for these purposes.

For this purpose, we consider in more details solving the 
economic linear regression problem by the OLS method.

All problems that are associated with solving the eco-
nomic problem of linear regression in the presence of near-
collinearity arise when solving the matrix OLS-equation:

	 = ⇔ =' ' .X Xb X Y Ab B 	 (1)

Recall that this does not mean the goodness of fit prob-
lem in the linear regression, but the problem of an adequate 
estimation of the regression coefficients jb   used in the eco-

nomics to quantify the impact of regressors jX    on the Y  (re-
sponse).

For any degree of the data near-collinearity, the OLS so-
lution to equation (1) is mathematically correct, as shown by 
the high accuracy of the approximation (goodness of fit) prob-
lem solving [2-8]. At the same time, the finding of adequate 
estimation of the regression coefficients by the OLS method 
in the presence of near-collinearity encounters serious difficul-
ties.
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Firstly, the solutions do not always have proper signs, i.e., 
they can be physically incorrect (the 1st problem).

Secondly, physically correct solutions may not corre-
spond to economic suppositions about the power of the influ-
ence of the respective regressors on the response in the popula-
tion, i.e., it may be inadequate (the 2nd problem).

General problems of solving linear equations systems of 
any level of ill-conditionality are considered in [1], where it is 
shown that the codomain of any non-singular square matrix A 
consists of two parts: the codomain of physical correctness, Dc 
in which all signs of the solution to the equation Ax = B corre-
spond to the content of the problem being investigated, and the 
codomain of physical incorrectness cD , in which not all the 
solution signs have a sense.

If the right-hand side B of the matrix equation (1) be-
longs to Dc, all the solution’ signs correspond to the content of 
the problem being investigated, i.e., the solution is physically 
correct. If the right-hand side of the matrix equation B ∈ cD , 
then some signs of the solution are necessarily incorrect and all 
the solution is physically incorrect [1].

In [1], it is also shown that this property of non-singu-
lar matrix equations is observed at any level of the matrix A  
conditioning. It is also shown that with the increasing of the 
ill-conditioning level of the matrix A, the area of physical cor-
rectness Dc  is narrowed.

Using the example of a simple economic problem, in [1], 
it is shown that the well-conditioned matrix equation of the 
second order, which arises in the problem of the sale of two 
products, for some values of the parameters of the problem has 
an economically incorrect solution. This happens if the right-
hand side B of the matrix equation belongs to the codomain of 
physical incorrectness ( cD ) of the matrix.  

On the basis of the studies carried out in [1], one can 
state that the problems of the OLS method in the presence of 
near-collinearity are as follows. 

As the ill-conditioning level of the matrix X'X grows with 
the data near-collinearity level, the physical correctness codo-
main Dc narrows.

Under the influence of random errors in the regressors 
and response, both Dc and the right-hand side B  are changed. 
This leads to changing in the position of the vector  B  inside  
Dc, which makes it possible an exit of the vector B from Dc. It 
results in changing some of the signs of the solution, and the 
components of the solution increase by the module, the higher 
the level of ill-conditioning the more the increase is.

High instability of the OLS method in the presence of 
near-collinear data is primarily due to a poor conditioning of 
the OLS matrix equation. In this case, the codomain of physi-
cal correctness (Dc) of the OLS matrix is very narrow and var-
ies significantly with random data changes, enforcing the right 
side of the OLS equation to exit out of the codomain of physical 
correctness of the OLS matrix.

However, as shown in [1], the most important aspect 
of the instability of the OLS method is the method of solving 
the matrix equation itself. The OLS uses the exact method of 
solving the linear systems (Gauss’ or Сramer’), which is very 
unstable under the data near-collinearity.

Numerous studies of solving poorly conditioned equa-
tions [20–29] have shown that exact methods cannot give a so-
lution with acceptable variability, although approximate meth-

ods that would give a solution with acceptable variability and 
accuracy, too, do not exist to date.

At present, the best method for finding an approximate 
solution to the linear regression problem under the ill-condi-
tioning remains the ridge-regression method [11; 12].

This method gives a stable solution for a not very small 
value of the ridge parameter, but its accuracy and stability de-
pend on this parameter value itself. This one leads to the ridge 
parameter optimization problem, which is also has been solved 
with an accuracy which cannot always be correctly estimated 
theoretically. In this regard, in practice, the OLS is used, as be-
fore, in the case when the solution has the correct signs [19].

In this work, first and foremost, it has been shown what 
kind of problems can arise when using the OLS in cases where 
the OLS-solution has the correct signs. We believe that such 
an investigation will allow researchers to decide for themselves 
whether they are satisfied with the accuracy given by the OLS, 
or there is a need to apply a more precise method, namely, the 
MOLS [1].

In the literature, the appearance of unreasonably large 
OLS solutions is associated with the poor conditioning of the 
OLS matrix in the presence of near-collinearity. As for the rea-
son for the appearance of incorrect signs of the OLS solution, 
there is no well-founded opinion on this matter in the literature 
[13; 23; 28; 29]. In article [29], the author gives many reasons 
for the appearance of incorrect signs in the OLS solutions, 
mainly of an economic nature, and provides recommendations 
for their elimination. The same concerns works [13; 23; 28], 
which consider similar reasons for the possible incorrectness 
of OLS solutions but without mentioning the reasons for the 
appearance of incorrect signs. 

In these works, the methods for eliminating the incor-
rectness of the OLS solution for all the mentioned authors are 
practically identical and have an economic direction. However, 
it should be taken into account that, as clearly stated in [13], 
measures based on economic theory do not always eliminate 
the appearance of incorrect OLS solutions, including incorrect 
signs. But it remains unclarified what causes exactly lead to the 
wrong signs of the OLS solutions.

This question is considered in [1], where it is shown that 
both the appearance of very large values in the OLS solution 
and the appearance of incorrect signs of the solution are associ-
ated only with the extremely large variability of the method of 
solving matrix equation (1).

Namely, due to the high variability of the OLS method, 
small changes in the data for not very large sample sizes lead to 
significant changes in the solution to the matrix equation (1).

Due to the impact of unrecorded factors, which increas-
es the incoherent noise in the regressors, vector B in (1) may 
come out from the codomain of matrix A, namely, Dc. There-
fore, both the incorrect signs in the solution to the economic 
regression problem and the increase of the amplitude of solu-
tions in the presence of near-collinearity are appearing (the 1st 
problem). 

If, despite the influence of random factors, the vector B 
remains in Dc, the OLS solution will have true signs and mean-
ingful absolute values. In this case, the solution is perceived by 
the researcher as adequate, although it may be not very close 
to the solution in the population due to the instability of the 
mathematical method itself (the 2nd problem).
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With the advent of the first problem, it is clear to every-
one that the solution is not appropriate, and that it is necessary 
to take some measures. Basically, these measures include the 
removal of some regressors according to a certain principle, 
see, e.g., [13; 23; 28]. After this, it is believed that everything 
is in order and, after checking for the significance by Student’s 
t-test, the solution is used for further research.

Herewith, one does not take into account the fact that 
the OLS solution can be unstable even when  B ∈ Dc, and the 
physically correct solution obtained can incorrectly reflect the 
relationship between the regression coefficients in the popula-
tion. In this case, the OLS solution may have the correct signs 
and be significant by Student’s t-test but be inadequate to the 
solution in the population. In addition, for another sample from 
the same population, some regression coefficients may become 
insignificant or have incorrect signs.

In this work it is shown that both problems (physi-
cal incorrectness and inadequacy of solutions) have the same 
source – the high instability of solutions of the matrix equation 
(1).

Moreover, if the problem of physical incorrectness (the 
1st problem) is easily diagnosed, then the problem of the inad-
equacy of physically correct solutions (the 2nd problem) does 
not manifest itself at all in individual solutions and, as far as the 
authors know, has not even been discussed in the literature.

The existence of the problem of the adequacy of physi-
cally correct solutions is shown in this work with the help of 
artificial data population (ADP) algorithm proposed in [1] for 
simple and multiple linear regression models. The ADP algo-
rithm, which is used in the work for simulating data, allows to 
generate linear regressors for a given a priori response.

Recall the basic principles of the ADP. At first, 
we set a priory any response Y: = + * .Y a s randn   Here, 
α and s are the arbitrary numbers, ( ,1)randn n  – the  
n-size pseudo-random vector. Based on this response, 
we set m regressors Xj,  j = 1  :  m as follows: α= +* ( * * * ( ,1))j j jX k Y d s randn n  

α= +* ( * * * ( ,1))j j jX k Y d s randn n , where,  β= tan( * /180)j jk pi

is the slope (angular coefficient) of a trend of the simple re-
gression of  Xj on Y. Accordingly, β j   is the angle between this 
trend and the OY axis. The angular coefficient jk   determines 
the linear influence of the regressor  Xj  on the response Y. The 
coefficient α allows to change the level of incoherent noise in all 
regressors simultaneously. The coefficients dj make it possible 
to change the level of incoherent noise in the individual regres-
sors Xj. The coefficient s allows to get rid of the dependence of 
the parameters of the artificial population on the choice of the 
variance of the response (s), which is important for comparing 
the simulation results with actual data.

The value kjY, changes coherently with the response and 
depends on the economic law of the influence of the regres-
sor on the response (kj). The second term in regressors is the 
incoherent noise. With the diminishing of the parameter β j ,  
the regular influence of the regressor  Xj on the response Y  in-
creases. Because of that, the correspondent regression coeffi-
cient bj  in the modeled population increases as well. It should 
also be noted that while modeling the stochastic regressors, the 
pseudo-random function ( ,1)randn n  in (3) restarts for each 
replica.

The regressors are consisting of a coherent part that is 
generated by regular random changes under the influence of 
economic laws that are the same for all objects, the incoherent 
part, i.e., random noise, which is a consequence of the influ-
ence on the regressors of unaccounted factors and the regular 
part, which accounts a linear impact of the regressor on the 
regressand.

The ADP allows to generate data from a limited popula-
tion (a population, which consists of all samples of a given size), 
in which it is possible to regulate the values of regression coef-
ficients, by changing the law of the influence of factors on the 
response (the regular part of the regressor that contains also 
the coherent changes), and the value of the variance of random 
noise (the incoherent part of the regressor). 

This allows us to investigate various methods of solving 
the linear regression problem for variability, depending on the 
size of the sample and the level of the regressors’ near-collinear-
ity. The increase or decrease of the level of near-collinearity is 
carried out by increasing or decreasing of the incoherent noise 
variance.

With the aid of the ADP, an artificial population of lim-
ited size (a limited population) is simulated. With this ADP in 
hand, we investigate in the paper the most common method of 
solving the linear regression problems, namely, the OLS.

It has been studied the variability of the OLS solution, 
depending on the size of the sample and the level of regres-
sors’ near-collinearity. For this, the level of regressors’ near-
collinearity is estimated by using the VIF-factor .

The presence of an artificial population (ADP), from 
which it is possible to take any number of samples of a certain 
size, helps us clarify a lot of details related to solving the linear 
regression problem. 

First of all, this concerns the question of the diagnosis of 
multicollinearity [13-19], which is still discussed in the hope of 
finding the value of the VIF-factor , which delimits data on mul-
ticollinear and non-multicollinear, although some researchers 
believe that multicollinearity is a continuous process for which 
the criterial number does not exist [12; 23].

In the paper, data simulations with the help of the ADP 
show a high variability of the VIF-factor  itself for samples of 
any size and for any level of data near-collinearity, which, in 
principle, does not imply the existence of a certain criterion 
that would distinguish between multicollinear and non-multi-
collinear data.

This means that we not always can find out in advance 
whether there is or not the multicollinearity and whether to 
take any measures to reduce it or not. This is especially impor-
tant in cases where the VIF-factor  is not very large.

For large VIFs it becomes clear, as will be seen further, 
that the near-collinearity should occur despite the large vari-
ability of the VIF itself.

There is, however, an opportunity as if to bypass the is-
sue of big VIF if, after solving the regression problem, all signs 
of the regression coefficients are correct and all coefficients are 
significant by Student’s t-test. 

In this case, the researcher is compelled to consider the 
obtained estimates of regression coefficients to be adequate to 
their values in the population. However, it is necessary to take 
into account the opportunity that all the correct signs of the 
regression coefficients could turn out randomly, and for an-
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other sample, the signs may be incorrect. Therefore, if the criti-
cal value of the VIF-factor  were known, the researcher could 
make a more informed decision about the possible adequacy or 
inadequacy of the estimates obtained.

Since the critical value of the VIF-factor does not exist, 
according to our investigation, the researcher is forced to make 
a decision only on the basis of Student’s criterion in the case 
of correct signs for all regression coefficients. In this regard, 
the question arises of the stability of Student’s criterion itself 
from sample to sample. Because of this, a study of the variabil-
ity of the t-statistic for regression coefficients obtained by the 
OLS is conducted in the paper. For this purpose, the variances 
of the regression coefficients are calculated by data modeling 
with the ADP and by the theoretical formulas obtained for the 
normal distribution of the residual error with practically the 
same result.

Therefore, the usual linear regression problem has been 
solved many times by the OLS method for samples drawn from 
the artificial data population (ADP), and each time the t-sta-
tistics were calculated for all regression coefficients using the 
known standard deviations of the regression coefficients. After 
that, the obtained values of t-statistics were averaged and their 
coefficients of variation were determined.

The ADP data modeling also has allowed us to reveal 
a high variability of the values of t-statistic both for large and 
non-very large samples and to study the variability of the values 
of t-statistic depending on the sample size and the level of near-
collinearity and to find the areas of parameters where the use 
of the OLS is unacceptable despite the OLS-solutions may be 
physically correct, i.e., have all correct signs. 

The study of the variability of the t-statistics calls into 
question the existing methodology for making decisions about 
the adequacy of OLS solutions due to the significance of the 
regression coefficients and their correct signs received by using 
the only one not very large sample.

Further application of the ADP simulation made it pos-
sible to investigate the variability of the regression coefficients 
themselves and to find out those ranges of the sample size and 
the level of near-collinearity in which the OLS gives an ad-
equate solution. The paper shows that the level of adequacy 
depends on the degree of regression coefficients variability, 
which should be set by the researcher a priori as a certain value 
of their coefficients of variation. For example, the acceptable 
value, to our mind, of the critical coefficient of variation may 
be: CV = 10 %.

Thus, in the present work, we will consider the solution 
to the linear regression problem to be adequate to the solution 
in the population if the coefficient of variation of the solution 
does not exceed 10 %.

The article also shows that the regression data simula-
tion using the ADP allows estimating the sample size, starting 
from which the OLS provides an acceptable accuracy of the 
regression coefficients at a given level of random noise in the 
regressors, which determines the near-collinearity level of the 
regressors.

Note that special attention in these studies is paid to the 
study of the variability of the solution to the linear regression 
problem with a high level of random noise in the regressors, 
i.e., with a low level of near-collinearity up to the practically 
non-correlated regressors.

It turned out that weakly correlating regressors with a 
high level of random noise in the regressors have an increased 
variance due to the random errors, which reduce the regres-
sion coefficient and increase its variability. This one casts doubt 
on the expediency of excluding strongly correlating regressors 
from the model with the only goal to reduce the level of the 
VIF-factor .

The authors agree with [23] in the point that the level 
of variability of OLS solutions is associated with the level of 
regressors’ near-collinearity, which is determined, as a rule, by 
the VIF-factor [8]. In other words, the idea expressed in work 
[23] is as follows: the variability of the least squares solution in 
a continuous manner depends on the level of near-collinearity 
and there is no any critical value that would separate the data 
into “multicollinear” and “non-multicollinear”. 

This assumption contradicts many theoretical works in 
which the authors try to find the critical value of the VIF-factor, 
e.g., 10 in [24] and 5 in [25], or the condition number of the 
OLS matrix, 20 as the critical one [8, p. 130].

Whether or not there is a critical value of a factor that di-
vides data into multicollinear and non-multicollinear ones can 
be checked directly from the data generated by the ADP. As an 
indicator, we take the VIF-factor. 

To do this, we use M = 104 samples from the population 
DS5(n, α), that consists of 5 regressors with size n = 10 (small), 
n = 40 (medium), n = 100 (fairly large) and so on, with different 
values of the alpha-parameters: 3; 1; 0.9, 0.8; 0.7; 0.6; 0.5; 0.4; 
0.3; 0.2; 0.1, 0.01. In this DS5(n, α) we take the following β j : 
{1, 1, 5, 5, 5} in degrees and dj : {1, 1, 1, 1, 1}. In this case, in the 
population, the values of the first two regression coefficients 
should be the same and large, the other three should also be the 
same but smaller. The variance of the incoherent noise of each 
regressor is given by the vector d. In this paper, it is taken the 
same for all regressors. The variances of the first two regressors 
should be the same, the last three should also be the same but 
have a smaller value. 

As an example of data simulations, Table 1 shows the 
95  % confidence intervals of the VIF-factor, the average values 
of the VIF-factor and the coefficient of variation of the VIF-
factor for each α-value and for n = 10. 

Table 1
Sample size, n = 10; 5 regressors

α CIVIF mean VIF CIVIF(%)

3 (1.4; 11.1) 3.6 90.0

1 (1.8; 22.3) 6.7 133.1

0.9 (1.9; 27.3) 7.8 131.6

0.8 (2.1; 31.8) 8.8 122.0

0.7 (2.4; 39.3) 10.8 109.2

0.6 (2.8; 49.7) 13.6 125.9

0.5 (3.5; 69.6) 18.7 133.0

0.4 (4.8; 104.1) 27.7 152.0

0.3 (7.5; 177.0) 46.6 229.2

0.2 (16.2; 405.4) 101.0 130.0

0.1 (54.0; 1512.0) 407.0 184.0

0.01 (0.6  104; 14.5  104) 3.9. 104 119.0
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When the α-parameter decreases, a near-collinearity 
arises due to the first two and the last three regressors, in which 
the angular coefficients are the same. As the α-parameter in-
creases, the near-collinearity level decreases due to a growth in 
the incoherent components of regressors. 

When the α-parameter is equal to 3, the regressors prac-
tically do not correlate with each other and their VIF-factor is 
close to 1.

In this case, the regressors behave like the orthogonal 
ones. On the other hand, when the alpha parameter value is 
equal to 0.01, the regressors become near-collinear. In this case, 
the VIF-factor is about 104. 

What should be noted first of all is that for a sample of 
any size the values of the VIF-factor vary considerably from 
sample to sample. 

For small samples (n = 10, Table 1), the case of α = 3 
really corresponds (as we will see later) to the absence of near-
collinearity, according to the estimate in [24] and our investiga-
tions of mutual correlations in artificial data (ADP). However, 
in this case, the VIF-factor can vary within fairly wide limits 
from 1.4 to 11.1.

On the other hand, the case of VIF = 10 from this in-
terval, for instance, can be also realized even at much smaller 
alphas up to α = 0.3, when, as we will see later, the near-col-
linearity can no longer be considered unimportant. 

Thus, for α  = 0.3, the 95 % confidence interval is (7.5; 
177.0), wherefrom we can see that the probability of finding the 
VIF = 10 in the interval (7.5; 10) is significantly less than the 
probability of finding the VIF in the interval (10; 177.0). This 
probability is small (~ 0.015), but it is not equal to zero.

This means, from the diagnostic point of view, that the 
VIF-value obtained in an experiment, e.g., VIF = 10, can cor-
respond both to the case of the absence of near-collinearity, 
and the case of its presence. Clearly, this applies not only to the 
value VIF = 10. If we obtain in an experiment, e.g., VIF = 5, then 
it could happen with α from 3 to 0.4. For these α, the variability 
of the VIF-factor  is of about (90-150) %. 

Thus, a very large variability of the VIF-factor of small 
samples does not allow us to speak about the existence of some 
specific critical value, which determines the existence or ab-
sence the near-collinearity of regressors in the limited popula-
tion.

Note that the MOLS solutions coincide with good accu-
racy with the OLS solutions for large values of the α-parameter, 
i.e., for small VIFs (~ 1) for samples of any size.

Summing up the above considerations, we can state that 
using the ADP and the tables of correspondence between the 
VIF and α-parameter, similar to Table 1, one can completely 
determine the range of applicability and, most importantly, the 
inapplicability of the OLS, which is determined by its possible 
inadequacy.

Investigation of the OLS solutions for adequacy. Before 
checking the solutions to the linear regression problem for 
adequacy, we will discuss the criterion of adequacy of a 
solution. As mentioned above, adequacy of a solution, in our 
opinion, can be determined by the smallness of the variability 
level of the regression coefficients. 

Then, the adequacy of the solution to the regression 
problem can be determined by setting the level of the coef-
ficient of variation (CV) of the regression coefficients. In the 

present work, for this purpose, the 10 % level of the CV is used, 
although it is clear that this level may vary depending on the 
practical problem being solved. 

It should also be added that for the fruitful application 
of the results of regression analysis in the economy, besides the 
adequacy of solving the regression problem, a sufficiently high 
value of the coefficient of determination is also required [26]. 

The commonly used condition is ≥2 0.8R . However, it 
should be noted that 2R  also changes from sample to sample 
and, therefore, it is necessary to estimate the coefficient of vari-
ation of 2R .

It is clear that we cannot calculate the coefficient of vari-
ation of 2R  for only one sample. But this one can be done ap-
proximately by finding out, using tables similar to Table 1, what 
value of the ADP parameter α corresponds to the observed 
sample VIF-factor for the given n. 

This study also has shown that it is necessary to make a 
decision on the significance of regression coefficients, using the 
observed value of t-statistic, with caution, since its coefficient 
of variation may be unacceptably large.

The 1st and 2nd problems of the OLS. Since the OLS is 
essentially the main method for solving the linear regression 
problems in practice, consider in detail two aspects of its solu-
tions.

First, (the 1st problem), we consider at which sample sizes 
the OLS solution gives, with a given probability, physically cor-
rect solutions, i.e., solutions with correct signs. Assuming the 
law of distribution of the regression coefficients is normal and 
using a 95 % confidence interval for a regression coefficient, 
it is easy to obtain that the condition of the positivity of the 
regression coefficients is satisfied, with a probability of 95 %, if  
CV < 50% for each regression coefficient.

Really, using a 95 % confidence interval for a regression 
coefficient

	 − < < + =( 2 2 ) 0.9 ,5b b b bP m s b m s 	 (2)

we can write down (2) via the coefficient of variation 
= /b bCV s m  :

	 − < < + =(1 2 / 1 2 ) 0.95.bP CV b m CV 	  (3)

We can see from (3) that a regression coefficient will be 
positive with a probability of 0.95 % if CV = 0.5. For this, the 
error in estimating the regression coefficient is 100 %:

	 .b bb m m= ± 	 (4)

Here, mb and sb are estimates of expectation and stan-
dard deviation in the limited population (all samples of size n). 

If we want to estimate the regression coefficients more 
accurately, e.g., with an accuracy of up to 20 %, then it is neces-
sary that the CV does not exceed 10 %:

	 = ⇒ = ±0.1 0.2 .b bCV b m m 	 (5)

Second, (the 2nd problem), we consider at which sample 
sizes the OLS solution gives, with a given probability, adequate 
solutions, i.e., solutions, which correctly reflects the relation-
ships between the coefficients of regression in the population. 
In this study, we believe this is the case if CV ≤10 %. Although, 
depending on the economic problem being solved, a 20 % error 
in estimating the regression coefficients may be too large.
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These two problems to research, we consider the OLS 
solutions for different sample sizes with different levels of re-
gressors’ near-collinearity, namely, according to above consid-
erations: α = 3 (no collinearity, VIF ~ 1), α = 0.5 (weak col-
linearity, VIF ~ 10), α= 0.1 (medium collinearity, VIF ~ 100),  
α = 0.01 (strong collinearity, VIF ~ 104).

Tables 2-3 show the solutions of the 5-factor linear re-
gression model obtained by the OLS for data taken from the 
DS5(n, α) population for different values of n and α. With such 
values of the DS5(n, α) parameters, the first two and last three 
regression coefficients have to be equal in the n-size limited 

population; their variances and coefficients of variation have 
to be the same inside each group but different between groups; 
the regression coefficients in the first group are more in abso-
lute value.

Absence of collinearity (VIF~1). Let us now consider 
the results of solving a linear regression problem using the OLS 
method given in Table 2 for the case of absence of the near-col-
linearity between the regressors (VIF~1, α = 3) for different val-
ues of the sample size (n). Samples was drawn from DS5(n, α) 
with parameters β j  = {1, 1, 5, 5, 5} and jd  = {1, 1, 1, 1, 1}.

Table 2

OLS solutions under no collinearity (α = 3, VIF~1)

One solution b0 b1 b2 b3 b4 b5

n =105, VIF=1.03 9.6377 4.1122 4.0367 0.8202 0.8142 0.8240

Theoretical t 412.74 88.26 86.44 87.87 87.34 88.30

n =106, VIF=1.03 9.6472 4.0767    4.1042 0.8177 0.8181 0.8116

Theoretical t 1307.79 275.86 278.08 277.44 277.63 275.58

Simulation, = = =.0,9510; (1.41; 11.45); 2.77VIF cn CI t

jmeanb 9.5944 4.1536 4.0491 0.8332 0.8193 0.8251

jbCV ,% 40.49 189.51 194.01 188.62 186.71 186.50

= = = = = ≅ ≅2
2

0.050.69, 26.8 %; 3.99, 199 %; 6.26. 0.5; 210%F tRR CV F CV F t CV

Simulation,  = = =.0,9510; (1.07; 1.63); 2.03VIF cn CI t

jmeanb 9.6319    4.0994 4.0414    0.8288    0.8278 0.8079

jbCV ,% 13.13   62.05   64.14   61.65   61.67   62.68

= = = = = ≅ ≅2
2

0.050.43, 26.8 %; 5.65, 49%; 2.49, 1.6; 62%F tRR CV F CV F t CV

Simulation, = = =.0,9560; (1.06; 1.41); 2.01VIF cn CI t

jmeanb 9.6406 4.1335 4.1030 0.8141    0.8132    0.8143

jbCV ,% 10.5236 49.4922   50.0838   49.6141   49.3576   49.9902

= = = = = ≅ ≅2
2

0.050.40, 24.0 %; 7.84, 42 %; 2.39, 2.0; 50 %F tRR CV F CV F t CV

Simulation, = = =.0,95100; (1.0417; 1.2630); 1.99VIF cn CI t

jmeanb 9.6483    4.0762    4.0855    0.8194    0.8171    0.8132

jbCV ,% 7.84   37.35 37.48 37.29 37.91   37.41

= = = = = ≅ ≅2
2

0.050.38, 19.8 %; 12.25, 32 %; 2.49, 2.7; 37 %F tRR CV F CV F t CV

Simulation, = = =.0,951000; (1.03; 1.07); 1.96VIF cn CI t

jmeanb 9.6441    4.0952    4.0848    0.8166    0.8160    0.8168

jbCV ,% 2.43   11.37   11.50 11.44 11.51 11.41

= = = = = ≅ ≅2
2

0.050.38, 19.8 %; 112.17, 11 %; 2.22 8.7; 11 %F tRR CV F CV F t CV
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Due to the consistency property of the OLS solutions, 
the coefficients of the regression of a sample tend in probability 
to regression coefficients in the population if n → ∞. Similarly, 
for cross-sectional data drawn from an n-size limited popula-
tion, the average from sample to sample value of the regression 
coefficients also tends in probability to the regression coeffi-
cients in the whole population with the number of repetitions 
M → ∞. 

This property is shown in Table 2, the first two lines of 
which represent usual OLS solutions for large samples, namely 
n = 105  and  n = 106. We see that the solutions for n = 105 and  
n = 106 are statistically identical and any of them can be taken 
as a solution in the population. On the other hand, the averag-
ing of the multiple repeated OLS solutions for a sample size of 
n = 10 (the number of repetitions is M = 104 ) also leads to a 
statistically close result with the first two rows.

Thus, we can get an estimate of the solution (regression 
coefficients) in the population DS5(n, α)  for given n and α us-
ing the OLS solution either with samples of large size or by re-
peating samples of the same size (n)many times. 

To get, however, the dispersion of the regression coef-
ficients (bj) and calculate their coefficients of variation (CVj), 
as well as the average values and coefficients of variation of the 
regression parameters (R2 – coefficient of determination, F – 
Fisher’s statistic, t – Student’s statistic and others, if necessary, 
including the VIF) for samples of a given size (n), it is necessary 
to use many times (M = 104 in our investigation) data genera-
tion with the aid of the algorithm DS5(n, α). The results of such 
calculations for the case of the absence of near-collinearity  
(α = 3, VIF ~ 1) for different sample sizes are shown in Table 2.

Analysis of the results shown in Table 2 can be summa-
rized as follows:

A. The mean values of the solutions (regression coef-
ficients) of the regression problem with M-times resampling 
from  DS5(n, α) for a given value of parameters (n, α) coincide 
in probability with the solution for one very large sample drawn 
from DS5(n, α)  for n = 106. This means that we can determine 
with any accuracy the regression coefficients in a limited popu-
lation with any parameters with the aid of the same algorithm 
DS5(n, α).

B. In the absence of a near-collinearity (VIF~1), the 
OLS solution gives physically correct solutions (CV < 50 %) for 
samples only larger than 60. For these cases, with a probability 
of 95 %, all regression coefficients will be positive and can be 
Student’s significant but maybe not adequate. As can be seen 
from the calculations in Table 2, the OLS solutions become ad-
equate (and statistically significant) starting with sample size 
more than 1000. It should be added that with small samples  
(n < 60), with a probability of 95 %, the researcher will not re-
ceive even just a physically correct solution, i.e., a solution with 
correct signs. 

However, if we look at the values of the coefficient of de-
termination (R2), we will see that its value increases with sam-
ple size decreasing and becomes quite acceptable for n ≤ 10. If, 
at the same time, in the experiment, randomly, all solutions of 
the OLS will have the correct signs and will be significant, then 
the researcher may mistakenly consider the solution to the re-
gression problem to be economically correct. 

C. With a sample size increase, the coefficient of deter-
mination decreases in average. As can be seen from Table 2, 

for n = 10  the coefficient of determination is of a moderate 
effect size [26], ( 2R = 0.69, =2 26.8 %RCV ), i.e., more or less 
acceptable. Already for n = 40, it is of a low effect size [26] ( 2R
= 0.43,  =2 26.8 %RCV ), i.e., unacceptable from an economic 
point of view. The same issue holds for larger samples, which 
means that in the absence of near-collinearity, for whatever 
size of the sample, the solution to the linear regression problem 
cannot be useful in economic analysis (a very small coefficient 
of determination indicates a small regular effect of regressors 
on the response). 

It should be noted that a decrease in the coefficient of 
determination with an increase in the sample size is not related 
to the solution method but is only due to the presence of large 
non-coherent noise in the regressors.

Summarizing the above results, we can draw the follow-
ing inference: solving the linear regression problem with non-
correlating stochastic regressors does not have an economic 
sense, no matter what method we use.

This allows to make another conclusion: a real linear re-
gression problem under near-collinearity should not be reduced 
to no-correlated regressors by discarding a part of strongly cor-
related regressors without an economic necessity.

Medium collinearity (VIF~100, α= 0.1). Let us further 
consider what happens to the OLS solution with an increase in 
the level of near-collinearity. In Table 3, we consider the prop-
erties of the least squares solution with a medium level of near-
collinearity (α = 0.1, VIF~100) using the same parameters of 
DS5(n, α).

    From the calculations given in Table 3 we can draw the 
following conclusions:

A. With a decrease in incoherent noise in the regressors 
(with increasing the VIF-factor) under the same economic laws 
(the same β j  angular coefficients), the influence of the regres-
sors on the response increases (the regression coefficients bj  
increase in the population). 

B. With an increase in the collinearity level, the possibil-
ity of obtaining an adequate solution to the linear regression 
problem by the OLS method opens up. We see from Table 3 
that with a VIF ~ 100 the OLS solutions are adequate starting 
with the sample size of 400.

C. The coefficient of determination (R2) remains high (~ 
0.95) for all sample sizes. Such a situation with the coefficient 
of determination opens up the possibility of obtaining an eco-
nomically adequate solution to the regression problem by the 
OLS method using a sample size larger than 400. In this case, 
the value of t-statistics and its variability for all regression coef-
ficients is also quite acceptable.

Considering the above results, we can draw the following 
inference: a solution to the linear regression problem for weak-
correlating stochastic regressors can be adequate and have an 
economic sense when using samples larger than ~ 400. 

In the range of sample sizes from ~ 23 to ~ 400, an OLS 
solution may have correct signs and be statistically significant 
but inadequate. Such a solution may not correspond to the rela-
tionship between regression coefficients in the population and 
some of the solution’s components may be insignificant.

For samples smaller than 23, the OLS method is likely to 
give a physically incorrect solution, i.e., a solution with wrong 
signs. 



225Проблеми економіки № 1 (39), 2019

Математичні методи та моделі в економіці

In addition, it is necessary to take into account the fact 
that there already exists a method for solving a linear regres-
sion problem adequately under any degree of near-collinearity 
of the regressors (see [1]).

Conclusions. Summing up the study of the applicability 
of the OLS in economic research, we can note the following.

A. In the paper, a new algorithm for modeling data 
(ADP), which constitute a population of limited size with an 
adjustable level of near-collinearity of the regressors and their 
influence on the response, is used. This algorithm does not use 
predefined regression coefficients in the population. This one 
makes it possible to correctly simulate a multiple regression 
of any dimension and near-collinearity level. This issue fun-
damentally distinguishes the ADP from the standard method 
[27], which, as shown in the article, cannot be applied for simu-
lating multiple regression problems at all.

B. The mathematical and economic correctness of the 
data modeling algorithm (ADP) has been justified. This model-
ing takes into account a regular influence on the response of the 
regressors and not a regular but coherent influence, which is a 
consequence of economic laws, as well as a random (incoher-
ent) noise in regressors, which is a consequence of the influ-
ence on the regressors of random factors.

C. With the help of the ADP, the variability of OLS solu-
tions (

jbCV ) is investigated depending on the sample size and 
the level of near-collinearity of the data (VIF), as well as the 
variability of the VIF itself and the most important characteris-
tics of the regression problem: the coefficient of determination 

(R2), t- and F-statistic. High variability of these parameters, es-
pecially the VIF, has been found.

D. Due to the high variability of the VIF, it is concluded 
that there is no critical value for this parameter, which divides 
the data into multicollinear and non-multicollinear ones. 

E. Due to the fact that the VIF value found from the re-
sults of observations can vary greatly from sample to sample,  
a qualitative scale of the level of collinearity of data is proposed, 
namely: “no collinearity”, VIF ~ 1; “weak collinearity”, VIF ~ 10;  
“medium collinearity”, VIF ~ 100 and “strong collinearity”,  
VIF ~ 104. These values of the VIF-factor correspond approxi-
mately to the following values of the α-parameter in the ADP 
algorithm: 3; 0.5; 0.1 and 0.01.

The tables like Tables 1-3 for the given sample size, allows 
determining to which of these four cases the observed data are 
relating and to approximately estimate, using the ADP with 
corresponding α-parameter, the statistical characteristics of 
the population, from which, presumably, data were extracted.

F. A qualitative scale of the level of conformity of a math-
ematical solution to a linear regression problem to its economic 
meaning is proposed: a solution is physically incorrect (not all 
signs of the solution are correct); a solution is physically correct 
but not adequate; a solution is adequate; a solution is economi-
cally adequate.

G. A quantitative scale of the level of conformity of a 
mathematical solution to a linear regression problem to its 
economic meaning is proposed: a solution is physically incor-
rect with a probability of 0.95 if the coefficient of variation of 

Table 3

OLS solutions under medium collinearity ( α = 0.1, VIF~100)

One solution b0 b1 b2 b3 b4 b5

n = 106, VIF=1.03 0.0246   11.3827   11.4061    2.2942    2.2615    2.3089

Theoretical t 11.46      156.32     157.28 157.87 155.57 159.15

Simulation, = = =.0,9510; (73; 1730); 2.77VIF cn CI t

jmeanb 0.0291   11.3771   11.6084    2.2865    2.2456    2.2901

jbCV ,% .10–3 1.3334    0.1175    0.1137    0.1166    0.1156    0.1162    

= = = = = ≅ ≅2
2

0.050.9989, 0.12 %; 1832, 223 %; 6.26, 0.9; 115 %F tRR CV F CV F t CV

Simulation, = = =.0,9523; (64; 327); 2.11VIF cn CI t

jmeanb 0.0298   11.4726   11.2944    2.2905    2.2782    2.2960

jbCV ,% 565.49   50.36   51.15   50.19 49.50   50.61

= = = = = ≅ ≅2
2

0.050.9983, 0.08 %; 2497, 53 %; 2.81, 2,0; 50 %F tRR CV F CV F t CV

Simulation, = = =.0,95400; (75; 106); 1.97VIF cn CI t

jmeanb 0.0299   11.4132   11.4358    2.2801    2.2870    2.2815    

jbCV ,% 114.16   10.19 10.03 10.02   10.10    10.03

= = = ⋅ = = ≅ ≅2
2 4

0.050.9980, 0.02 %; 4 10 , 10 %; 2.24, 10; 10 %F tRR CV F CV F t CV



226 Проблеми економіки № 1 (39), 2019

Математичні методи та моделі в економіці

the solution is more than 50 %; a solution is physically correct 
but not adequate (with the same probability) if the coefficient 
of variation of the solution is less than 50 % but greater than 
10 %; a solution is adequate (with the same probability) if the 
coefficient of variation of the solution is less than 10 % (solution 
error is less than 20%); a solution is economically adequate if it 
is adequate and R2 ≥ 0.8 .

H. The variability of the OLS solution to the 5-factors 
regression problem in the absence of data collinearity (VIF ~ 1,   
α = 3) is investigated. It is shown that in this case, solutions to 
the regression problem with any sample size cannot be used 
in economic studies either due to a large CV of the solution 
(for small samples) or due to a small  R2 (for large samples).
Thus, in some cases, the OLS solution can be physically correct 
and even adequate but have a small  R2, i.e., to be economically 
inadequate. 

I. It is noted that with an increase in the near-collinearity 
level it becomes possible to correctly use the OLS solution in 
the economy. The solutions become economically adequate, 
starting with the sample size of ~ 400. With sample sizes from 
~23 to ~ 400, an OLS-solution may be physically correct and 
significant but not adequate, which means that the solution 
may be far from the solution in the population.

J. In the case of a “strong” near-collinearity (VIF ~ 104,  
α = 0.01), an OLS solution and its properties practically do not 
differ from the case of the “medium” near-collinearity (VIF ~ 
100).

Summing up the results of the study of the 5-factor re-
gression model DS5(n, α), it can be stated that the OLS is likely 
to give an inadequate solution for sample sizes smaller than ~ 
400. 

Physically correct OLS-solutions for samples ranging in 
size from ~23 to ~ 400 create the illusion of economically cor-
rect solutions, but, in fact, the solutions obtained may be far 
from the solution in the population. For samples smaller than  
~ 23, the OLS with a high probability gives a physically incor-
rect solution (with incorrect signs).

Note that the properties of the OLS solution do not 
change significantly depending on the number of regressors: 
the qualitative picture remains the same. 

In connection with the foregoing, the authors believe 
that the conducted research is sufficient to show the necessity 
of using the MOLS [1] instead of the common OLS, especially 
because the MOLS only improves its accuracy with the growth 
of the regressors near-collinearity level and eliminates the need 
for removing strongly correlated regressors at all.
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