
MIHIcrEpcrBo ocBITIr I HAyKvI yrpAinra
xApKrB cr xrafr HArIr o HAJrbHrafr nxoHoMrqHufr yHrBEp c rrrnT

IMEHI CEMEHA KY3HEII'{

3ATBEPAXEHO
na gaciAasni raQe4pu
iH$opnrarlifiHux cr{creM
flpororon Ng 1 ein 22.08.2023 p.

faryer 3HaHb

Cneuizurruictr

Oceirrrift pinenr

OceirHs rporpaMa

Cratyc Aucrlunninn

Moea BLrKJraAaHHs, HaBqarl:ns. ra oqiurcBanHt

Pospo6uur:
K.T.H., AOTIeHT

3ani4ynau xaSe4pra
iuS opnraqifiurax cr{creM

fapaur rporpaMrr

MeroAr,rqHoi po6oru

ua HEMAruKAJIO

nn6iprcona

anr"rrificrrca

Anapift IIOJITKOB

,,{rranrpo EOHAAPEHKO

Oner OPOJIOB

MOEIJIbHI TEXHOJIOTfi

podoua rporpaMa HaBrraJrbHoi Ancqun"niHu (PIIHA)

12 " IHQoprvraqiftni rexnororii"
l2l ttlHxenepin [porpaMHoro sa6esne.reHHfltt

nepmnft (6ara;ranpcrrcnfi)
ttluxeuepir [porpaMHoro sadesne.reHHfl tt

Xaprin
2024

mr"

niAnracauo KEII

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVBD
at the meeting of the department
information systems
ProtocolNo. I of 22.08.2023

Field of knowledge
Specialty
Study cycle
Study progrcmme

Course status

Language

Developer:
Ph.D. (Technical sciences),
associate professor
Head of Information systems
department:
Ph.D. (Technical sciences),
associate professor

Head of Study Programme:
Ph.D. (Technical sciences),
associate professor

and methodological

NEMASHKALO

MOBILE TECHNOLOGY
Program of the course

12 ttlnformation technologies tt

l2l ttSoftware engineering"
first (bachelor)
tt Software Engineeringtt

elective
English

digital signature Andrii POLIKOV

Dmytro BONDARENKO

Oleg FROLOV

Kharkiv
2024

AG

v \l

E:J2sl3lm
l+<

3

INTRODUCTION

Mobile Technologies is a key course that covers the concepts and practices

related to the development of mobile applications. Given the high level of penetration

of mobile devices in society and their impact on our daily lives, the knowledge and

skills related to mobile application development have become critical for information

technology. The course is focused on learning the Kotlin programming language and

the Android SDK as the main tools for creating applications on the Android platform.

Students gain an understanding of the development process from initial design to

testing and release of the application. They also study in detail the user interface,

interaction with device sensors, networking, data storage, use of services, and much

more. In addition, the course lays the foundations of application architecture to

ensure reliable and productive software. Students gain practical experience in

working with projects, which will help them to better absorb theoretical material.

The Mobile Technologies course involves mastering mobile application

development skills, including: the ability to work with Android Studio and the

Android SDK, understanding and using the Kotlin programming language, building

an application interface using XML, using SQLite to store data in an application,

integrating with web services via HTTP and REST, working with multimedia

applications in Android, using Google Maps, and using the Git version control

system. In addition, it is important to acquire the ability to develop applications that

meet modern security, performance, and best design practices.

The purpose of teaching the course "Mobile Technologies" is to provide higher

education students with a system of special theoretical knowledge and practical skills

in the development of mobile applications on the Android platform. Development of

analytical skills, teamwork skills, use of modern tools, development environments

and methodologies for the development of business-oriented mobile applications. The

study of educational material allows students to develop skills in the field of mobile

technologies, to adapt to the rapidly changing conditions in the market of mobile

applications and technologies.

Tasks of the course are:

– providing students with the necessary theoretical knowledge of the

Android platform architecture, Kotlin programming language and various tools and

libraries for developing Android applications;

– development of practical skills in developing mobile applications for the

Android OS, including UI/UX design, Kotlin coding, use of databases and web

services, work with multimedia and geolocation services;

– teaching students to use the Android SDK, the Android Studio

development environment and the Git version control system for effective teamwork;

– awareness of the latest trends and best practices in mobile application

development;

– development of skills in analysing and solving problems that arise

during application development;

– preparing students for effective teamwork and independent project

implementation;

4

– familiarising students with the process of deploying and testing mobile

applications on various devices and platforms;

– developing a responsible attitude to the quality of code and application

performance.

The subject matter of the course is a set of knowledge and skills required for

the effective design, coding, testing and optimisation of mobile applications on the

Android platform. This includes learning the Kotlin programming language,

understanding the architecture of the Android platform, using tools and libraries to

develop Android applications, and working with databases, services, the network, and

the smartphone camera.

The object of the course is the processes of developing, testing, and making

changes to mobile applications created to operate on the Android platform.

The learning outcomes and competencies formed by the course are defined in

table 1.

Table 1

Learning outcomes and competences formed by the course

Learning outcomes Competences that must be mastered by a

student of higher education

LO07 GC05, SC13

LO12 SC03, SC14

LO17 GC02, SC12

LO18 GC06, SC12

LO21 SC08

where, LO07. To know and to apply in practice the fundamental concepts, paradigms, and

basic principles of functioning of language, tool and computing software engineering tools.

LO12. Apply effective software design approaches in practice.

LO17. Be able to apply component-based software development methods.

LO18. Know and be able to apply information technologies for data processing, storage, and

transmission.

LO21. To know, analyze, select, and competently apply information security (including

cyber security) and data integrity tools in accordance with the applied tasks and software systems

being developed.

GC02. Ability to apply knowledge in practical situations.

GC05. Ability to learn and master modern knowledge.

GC06. Ability to search, process and analyze information from various sources.

SC03. Ability to develop architectures, modules and components of software systems.

SC08. Ability to apply fundamental and inter disciplinary knowledge to successfully solve

software engineering problems.

SC12. Ability to carry out the system integration process, apply change management

standards and procedures to maintain the integrity, overall functionality and reliability of the

software.

SC13. Ability to reasonably choose and master tools for software development and

maintenance.

SC14. Ability to think algorithmically and logically.

5

COURSE CONTENT

Content module 1. Development environment for mobile devices.

Kotlin language.

Topic 1. Introduction. Architecture and components of the Android

mobile platform. Developer environment. GIT.

1.1. Introduction to the discipline. Control measures and learning outcomes.

1.2. Overview of Android and its architecture: introduction to Android: history,

versions and developers of Android; Android architecture (Linux kernel, libraries,

Android Runtime, Application Framework); main components of Android

(Activities, Services, Broadcast Receivers, Content Providers); overview of Android

Studio and its main functions; creating a simple application using Android Studio.

1.3. Introduction to Git and its basic commands: what is Git and why is it used?

installing Git and setting up the environment; creating a new Git repository and

cloning an existing one; creating commits, branches, and viewing the commit history;

working with remote repositories (push, pull, fetch);

1.4. The concept of Android App Bundle and APK; what is an APK and how

to create it; what is an Android App Bundle and how it differs from an APK; creating

and verifying an Android App Bundle; using Split APK to distribute applications;

optimising the size of APK and Android App Bundle.

1.5. Debugging an Android application: an introduction to debugging in

Android Studio; setting up breakpoints; using the Debug window to track code

execution; debugging when using connected devices; debugging memory issues and

memory leaks using Android Studio.

1.6. Using Logcat to monitor application behaviour: introduction to Logcat and

its tasks; using different levels of Log calls (Log.d, Log.i, Log.w, Log.e, Log.v,

Log.wtf); filtering Logcat output using tags and importance levels; recording and

exporting Logcat output; using Logcat to analyse exceptions and errors.

1.7. Android Gradle and its use: introduction to the Gradle build system; basic

Gradle configuration files: build.gradle (project) and build.gradle (module); adding

dependencies to an Android project; understanding Gradle scripts and the Gradle

build lifecycle; using Gradle to create APKs and Android App Bundles.

Topic 2. Topic 2. Fundamentals of the Kotlin language. Basic

constructions. Lambda. Classes. Idioms.
2.1. Introduction to Kotlin and its basic constructs: introduction to Kotlin:

history, features and advantages; first Kotlin program; working with variables: var

and val; basic data types and their operators; flow control: if-else, switch, loops.

2.2. Functions and lambda expressions in Kotlin: creating and calling

functions; using function parameters and defining return types; using simple and

block lambda expressions; lambda expressions with receivers and function types;

collections and high-level functions: map, filter, reduce.

2.3. Classes and objects in Kotlin: creating and using a class and its objects;

creating constructors and using properties; inheritance in Kotlin: superclasses and

overrides; abstract classes, interfaces and their implementation, delegation; visibility

restrictions (private, protected, internal, public); nested and inner classes.

6

2.4. Using null-safety in Kotlin: the basics of null-safety in Kotlin; working

with variables that can be null; using the "??" safety operator, the "?:" operator, the

"!!" operator and its consequences.

2.5. Kotlin idioms and good practices: an introduction to Kotlin idioms;

working with null values (null safety); using the keywords "apply", "let", "it", "also"

and "run"; using the "with" and "lazy" operators; destructive declarations and

copying.

Topic 3. Kotlin language. Collections, filtering, transformations.

Exceptions.
3.1. Working with collections in Kotlin: creating and using lists (List), sets

(Set) and dictionaries (Map); operations on collections: adding, deleting, searching

for items; immutable and mutable collections; creating and using mutable collections;

walking through a collection using a for loop; using collections as function

parameters.

3.2. Working with lists in Kotlin: creating lists, adding and removing items;

processing lists: for loop, map, forEach methods; operations with lists (sorting,

removing duplicates); converting lists (toSet(), toMap()); converting lists to strings

and vice versa.

3.3. Filtering and transforming collections in Kotlin: filtering collections using

the filter function; transforming collection elements using the map function; built-in

methods for searching in collections (find, findLast, firstOrNull, lastOrNull); using a

sequence of several operations through chaining; using flatMap and flatten to work

with nested collections; using aggregate functions (reduce, fold, max, min, sum,

average, etc.).

3.4. Working with exceptions in Kotlin: what are exceptions and why do you

need to handle them; throwing exceptions; handling exceptions with try/catch blocks;

finally block and its use; creating your own exceptions.

3.5. Creating and using extensions in Kotlin: extensions in Kotlin: what they

are and how to use them; creating extension functions; creating extension properties;

using extensions in real code; working with extensions of third-party classes.

Content module 2. Content module 2. Architecture and development

tools for Android OS.

Topic 4. Screen markup: XML basics. Screen elements, element

containers.
4.1. XML basics for Android screen markup: introduction to XML; using XML

in Android for screen markup; XML syntax for describing screen elements; basic

XML attributes for elements in Android; marking up the screen in Android Studio

using XML.

4.2. Types of elements on the screen in Android: using text fields (TextView);

working with buttons (Button); creating lists using RecyclerView; entering text using

EditText; displaying images using ImageView.

4.3. Using containers to group elements on the screen: using LinearLayout to

mark up the screen; working with RelativeLayout to create more complex interfaces;

using FrameLayout to position elements on the screen; GridLayout and its features;

ConstraintLayout to create flexible interfaces.

7

4.4. Adapt screen layout to different device sizes and orientations: respond to

screen orientation changes; create different layouts for portrait and landscape

orientations; use ConstraintLayout for responsive layout; use Android Studio Preview

to view responsive layout; work with different dimensional resources.

4.5. Customising screen elements and styling the interface: changing the

properties of elements: colours, fonts, and other attributes; creating and using styles

and themes; visual styling of buttons, lists, and other elements; using vector and

raster images; animating elements to the interface.

Topic 5. Accessing and managing screen elements from code. Handling

events.
5.1. Accessing screen elements from code: using the findViewById method to

access elements; using Android Kotlin Extensions to automatically generate display

objects; working with screen element properties; handling exceptions when working

with markup elements; using LiveData to monitor the state of UI components.

5.2. Interactive controls - Button, EditText, Checkbox and others:

implementing a button and processing button clicks; using the text input field

(EditText); using checkboxes and radio buttons (CheckBox, Switch); working with

drop-down lists (Spinner); working with Radio Button and Radio Group.

5.3. User interaction events: processing click events; processing touch events;

processing long click events; processing keyboard events; processing focus switching

events.

5.4. Working with enumerators (RecyclerView): basics of working with

RecyclerView; creating an Adapter for managing RecyclerView elements; handling

click events on RecyclerView list items; optimising RecyclerView performance;

implementing complex lists using RecyclerView.

5.5. Using animations to improve UX: the basics of the Android animation

system; animation of changing the properties of elements (ObjectAnimator); spatial

animations of transitions (Transition); animation of transitions between Activities

(Activity Transition); using Animated Vector Drawables to create complex

animations.

Topic 6. Application, Activity and its life cycle. Manifest. Android

permission system.
6.1. General aspects of working with Applications and Activities in Android:

the general structure of an Android application; the role and strategies for using the

Application class; the concept and role of an Activity in an Android application;

creating new Activities and integrating them into an application; methods for starting

and ending Activities.

6.2. Activity lifecycle: understanding the Activity lifecycle; handling the initial

stages of the lifecycle (onCreate, onStart); responding to pausing and resuming an

Activity (onPause, onResume); handling the termination of the Activity lifecycle

(onStop, onDestroy); using savedInstanceState to save the state of an Activity.

6.3. Android Manifest component in applications: understanding the role and

use of the Android Manifest file; declaring an Activity in the manifest; using the

manifest to control the screen orientation and other settings of the Activity; declaring

optional access to hardware and services; using the manifest to declare permissions.

8

6.4. Working with permissions in Android: understanding the concept of

permissions in Android; permission requirements outlined in the Android manifest;

requesting permissions at runtime; handling scenarios where a user denies or accepts

permissions; best practices for managing permissions.

6.5. Intents and working with them within an Activity: understanding the role

of intents in Android; creating and using intents to launch an Activity; using intents

to transfer data between Activities; responding to intents in an Activity; using intent

filters to respond to system events.

Topic 7. Fragment and its life cycle. Android Jetpack Components:

navigation.
7.1. General aspects of working with Fragment in Android: purpose and basic

properties of Fragment; creating a new Fragment; integrating Fragment into Activity;

interaction between Fragment and Activity; dynamically adding, removing, or

replacing Fragment in Activity.

7.2. Fragment life cycle: a general overview of the Fragment life cycle;

handling the creation of a Fragment: methods onAttach, onCreate, onCreateView;

handling the transition of a Fragment to the activity state: methods onActivityCreate,

onStart, onResume; handling the pause and stop of a Fragment: methods onPause,

onStop; handling the destruction of a View and the Fragment itself: methods

onDestroyView, onDestroy, onDetach.

7.3. Working with the Android Jetpack library and navigation components:

general introduction to the Android Jetpack library and architectural components;

introduction to the Navigation Component; organising navigation between Fragments

using the Navigation Component; processing and transferring data between

Fragments using the Navigation Component; responding to system events, such as

the "Back" button, within the navigation.

7.4. Designing Responsive UIs with Fragments: designing a responsive UI

using Fragments; arranging multiple Fragments in a single Activity; creating tabs or

sliding screens using Fragments; creating dialogue boxes or full-screen advertising

message boxes using DialogFragments; using Fragments to build menu navigation

items.

7.5. Optimising data handling in Fragment: using ViewModel to manage data

in Fragment; storing and restoring Fragment state; using architectural components to

work with databases in Fragment; reusing View objects and display logic in different

Fragments; using LiveData to monitor data in Fragment.

Topic 8. Data storage. Working with files. Preference. Basics of

databases, Room.
8.1. Storing data in a file: introduction to the mechanism of storing data in a

file; storing information in the internal memory of the device; storing information on

an external memory card; reading and writing data to a file; security when storing

data in a file.

8.2. Working with Shared Preferences: defining and working with Shared

Preferences; writing data to Shared Preferences; reading data from Shared

Preferences; editing and deleting data from Shared Preferences; saving complex data

structures from Shared Preferences.

9

8.3. Introduction to SQLite databases: using SQLite in Android; creating a

database and creating tables; inserting, updating, and deleting rows; querying a

database: selecting and sorting data; closing a database and handling exceptions.

8.4. Using the Room ORM library: introducing and configuring the Room

library; creating a database and entities using Room; creating a DAO to access the

database; inserting, updating, and deleting records using Room; creating queries and

processing the result.

8.5. Synchronisation with a remote database: working with remote APIs using

Retrofit; using Gson to process JSON responses; working with OkHttp helper; using

the Repository pattern for further asynchronous work with the database; using

LiveData to monitor changes in the database.

Content module 3. Libraries and extension development tools for

Android OS.

Topic 9. Access to the Internet. Retrofit, JSON.
9.1. Introduction to Internet access and HTTP requests: reviewing Android

Internet usage scenarios; selecting network access rules; using Handler and Looper to

solve network tasks; using HttpURLConnection for Internet requests; using

AsyncTask for network requests.

9.2. General overview and use of Retrofit: introduction to Retrofit; configuring

Retrofit to execute HTTP requests; configuring Enp-Point APIs and building requests

with Retrofit; using Retrofit for synchronous and asynchronous calls; handling

responses and errors with Retrofit.

9.3. Working with APIs and JSON: introduction to the JSON format; subscribe

API End-Points that return JSON; deserialisation of JSON to Retrofit converters;

serialisation of data to JSON for sending to the server; handling complex JSON

responses.

9.4. Integrating OkHttp with Retrofit: using OkHttp as an HTTP client for

Retrofit; logging HTTP requests and responses using OkHttp; configuring requests

with additional headers or parameters; managing network contingency and request

repetition; handling HTTP error responses using OkHttp.

9.5. The Gson Library for JSON Processing: Introduction to the Gson Library;

converting JSON to Java objects using Gson; converting Java objects to JSON using

Gson; using Gson annotations to accurately represent JSON; handling nested and

arrayed objects in JSON using Gson.

Topic 10. Basics of application architecture. MVVM, ViewModel.

LiveData, coroutine.
10.1. Introduction to application architecture: the importance of a well-

structured application architecture; an overview of SOLID principles; an overview of

the MVC pattern; an overview of the MVP pattern; an overview of the MVVM

pattern.

10.2. Applying the MVVM pattern: an example of implementing the MVVM

pattern in Kotlin; definition of ViewModel and its role in the MVVM architecture;

definition of View and its role in the MVVM architecture; definition of Model and its

role in the MVVM architecture; communication between components in MVVM.

10

10.3. Using ViewModel to save and manage UI data: introduction to the

ViewModel class and its use; creating a ViewModel for an activity or fragment;

saving and restoring data through a ViewModel; determining the life of a ViewModel

in the context of the owner's life cycle; using ViewModel with LiveData.

10.4. Using LiveData for reactive programming: introduction to LiveData and

its use in Android; creating and using LiveData objects; integrating LiveData with

ViewModel; updating LiveData values and monitoring changes; using

Transformations with LiveData.

10.5. Using coroutines for asynchronous tasks: an introduction to coroutines

in Kotlin; comparing coroutines and callbacks/AsyncTask; creating and running

simple coroutines; managing multithreading with coroutines: Dispatchers,

withContext; error handling and exceptions in the context of coroutines.

Topic 11. Services, WorkManager. Notifications.

11.1. Understanding and using services: an introduction to Android services;

creating a simple service; creating a Bound Service; starting and stopping a service;

synchronising data in the background using services.

11.2. Working with WorkManager: introduction to WorkManager; creating a

simple task (WorkRequest); running a task (WorkRequest); saving the status and

processing the results of tasks; managing an unstable connection and using periodic

requests.

11.3. Introduction to notifications: understanding and benefits of notifications;

creating and configuring a notification channel; creating and broadcasting a

notification; opening an activity through a notification; configuring actions and

buttons in a notification.

11.4. Creating persistent notifications: general ideas and uses of persistent

notifications; creating a notification that cannot be deleted or postponed; setting audio

and intensity settings for notifications; adding a large image or text to a notification;

sending a notification that requires an immediate user response.

11.5. Working with Foreground services: introduction to foreground services;

creating a foreground service; switching a service to foreground mode; updating a

foreground service notification; stopping or terminating a foreground service.

Topic 12. Working with GPS, working with maps, working with the

camera.

12.1. Using GPS and getting geolocation: introduction to GPS and geolocation

services in Android; requesting geolocation permissions; getting the current location

of the user; working with the Location object; location change listers.

12.2. Working with maps using the Google Maps API: an introduction to the

Google Maps API; adding a Google Map to your application; setting up and using a

GoogleMap object; adding markers and drawings to a map; camera movement and

controlling the view.

12.3. Working with the camera: an introduction to using the camera in

Android; requesting camera permissions; launching the camera's Intetn to take a

photo; taking and saving a photo; using the Android Camera API for more control.

12.4. Connecting to and using Google Play Services: general knowledge of

Google Play Services; installing and connecting Google Play Services to the project;

11

identifying and resolving connectivity issues; using Google Play Services geolocation

services; using other Google Play Services APIs such as Google Drive API, Google

Fit API, etc.

12.5. Advanced camera control using the Camera2 API: an introduction to the

Camera2 API; working with the CameraDevice object; creating a preview request;

setting up the CaptureRequest object for taking photos; working with turning on/off

the flash, focusing, and other camera settings.

The list of laboratory studies in the course is given in table 2.

Table 2

The list of laboratory studies

Name of the topic

and/or task

Content

Topic 1 – 2 Study of development tools in Kotlin. Basic constructs of the Kotlin

language. GIT code version control

Topic 3 Study of OOP and lambda in Kotlin

Topic 4 – 6 Deploying the Android Studio development environment and studying the

basic elements of Activity, lifecycle, and inter-component communication

Topic 5 – 7 Exploring the use of RecyclerView lists in a mobile application and the use

of snippets and navigation between them

Topic 8 Investigating the operation of databases on Android using Room

Persistence Library

Topic 9 Exploring the operation of web services with Retrofit and processing JSON

responses

Topic 10 – 11 Creating asynchronous services using Kotlin Coroutines and LiveData with

ViewModel. Storing and transferring Activity state when the device is

rotated.

Topic 12 Exploring how Goole Map, GPS, and camera work

The list of self-studies in the course is given in table 3.

Table 3

List of self-studies

Name of the topic

and / or task

Content

Topic 1 – 12 Study of lecture material

Theme 1 – 12 Preparation for laboratory classes

Theme 1 – 12 Preparation for current tests

Theme 1 – 12 Preparation for the exam

The number of hours of lectures and laboratory studies and hours of self-study

is given in the technological card of the course.

12

TEACHING METHODS

In the process of teaching the course, in order to acquire certain learning

outcomes, to activate the educational process, it is envisaged to use such teaching

methods as:

Verbal (lecture (Topics 1 - 3, 4, 7, 9, 12), problem lecture (Topics 1, 4, 6 - 8),

lecture-visualisation (Topics 1 - 12)).

Visual (demonstration (Topics 1 - 12)).

Laboratory work (Topics 1 - 12), case method (Topics 4, 6 - 8, 9 - 12).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning

outcomes of students.

Current control is carried out during lectures, laboratory classes and aims to

check the level of readiness of the higher education applicant to perform specific

work and is assessed by the amount of points scored:

− for courses with a form of semester control as an

exam: maximum amount is 60 points; minimum amount

required is 35 points.
Final control includes current control and an exam.

Semester control is conducted in the form of a semester exam.

The maximum amount of points that a higher education student can receive

during an exam is 40 points. The minimum score for an exam to be considered passed

is 25 points.

Final grade in the discipline is determined by summing up the points for the

current and final control.

During the teaching of the course, the following control measures are used:

Current control: defence of laboratory works (40 points), current control works

(10 points), presentations (10 points).

Semester control: Exam (40 points)

More detailed information on the assessment system is provided in

technological card of the course.

An example of an exam card and assessment criteria.

An example of an exam card

Semyon Kuznets Kharkiv National University of Economics

First (bachelor) level of higher education

Specialty "Software Engineering"

Educational program "Software engineering"

Semester I

Course "Mobile Technology"

13

EXAM CARD No. 1

Task 1. Test.

Question No. 1

Which statement in the build.gradle file correctly indicates that the corresponding module

is an Android library module?

Choose one of 4 answers:

1) apply plugin: 'com.module.library'

2) apply plugin: 'com.android.library'

3) apply plugin: 'com.module.library'

4) include plugin: 'com.module.library'

Question No. 2

What is missing from the activity life cycle?

Choose one of 4 answers:

1) onPause()

2) onResume()

3) onOpen()

4) onStart()

Question No. 3

True or false? When your app goes into the background, it is not guaranteed to be

destroyed. It can only stop and wait for the user to return.

Choose one of 2 answers:

1) True

2) False

Question No. 4

True or false? When the enabled attribute is used, it determines whether the view is visible.

Choose one of 2 answers:

1) False

2) True

Question No. 5

What is the correct syntax to print "Hello World" in Kotlin?

Choose one of 4 answers:

1) println("Hello World")

2) Console.WriteLine("Hello World")

3) cout << "Hello World";

4) System.out printline("Hello World");

14

Question No. 6

How to start writing a **while** loop in Kotlin?

Choose one of 4 answers:

1) while (x < y)

2) if x > y while

3) while x < y

4) while x < y then

Question No. 7

What is to in the example below:

val test = 33 to 42

Choose one of 4 answers:

1) Kotlin keyword to create Pair(33, 42)

2) Syntax error

3) Kotlin keyword to create a Range from 33 to 42

4) An infix expansion method that creates a Pair(33, 42)

Question No. 8

Which function declaration is correct in Kotlin?

Choose one of 4 answers:

1) int sum(int a, int b)

2) function sum(a: Int, b: Int): Int

3) int sum(a: Int, b: Int)

4) fun sum(a: Int, b: Int): Int

Question No. 9

Specify the option used to handle null exceptions in Kotlin?

Choose one of 4 answers:

1) Range

2) Sealed Class

3) Elvis Operator

4) Lambda function

Question No. 10

What is the default behaviour of Kotlin classes?

Choose one of 4 answers:

1) All classes are public

2) All classes sealed

3) All classes final

4) All classes abstract

15

Task 2.

Develop a mobile application that consists of a single screen form and displays information

about one object of the corresponding subject area. The application should load and save data to a

file.

The application must provide (use):

constrained layout, which allows you to create complex user interfaces by using constraints

between different elements;

restrict the virtual keyboard in accordance with the data entered;

store and restore data when switching to the background and using data saving to the

internal file storage for permanent storage in the JSON serialisation format;

call a short Toast message about saving data;

use the button with the usual hold (Click) to open a web page in the browser;

internationalisation: English and Ukrainian languages;

use the GIT code versioning system. All implementations of the requirements should be

documented in the form of commits. Upload (push) to the gitlab.hneu.net server to the examen

project created in your account.

Approved at the meeting of the Department of

Information systems protocol No. __ from «___» __________20___р.

Examiner _________________ Ph.D., associate professor, Andrii POLIKOV

Head

of the Department _________________ Ph.D., associate professor. Dmytro BONDARENKO

Evaluation criteria

The final score for the exam is the sum of the scores for all tasks, rounded to the nearest

whole number according to the rules of mathematics.

The algorithm for solving each task includes separate stages that differ in complexity, labour

intensity and importance for solving the task. Therefore, individual tasks and stages of their solution

are evaluated separately from each other as follows:

Task 1 (test).

The first question is dedicated to testing theoretical knowledge of the discipline. The test

includes 10 questions worth 1.5 points each. A total of 15 points. The test lasts 20 minutes.

Task 2 (heuristic).

The second question is about the development of a mobile application in relation to the task

and provide a software project with the program code and a report with screenshots demonstrating

the application. The project is developed in the Kotlin programming language and the Android

platform. The applicant must create a project in the Android Studio environment. The main goal of

this task is to test the applicant's practical skills in designing the application architecture, designing

the user interface, and being able to implement business logic in the application. In doing so, the

applicant is allowed to use existing reference literature. After checking the application, the applicant

receives K_1 points for the following requirements (Table 4).

Table 4

Assessment criteria for the diagnostic task

The second task is scored from 0 to 25 points. The number of points for the second task is

determined in accordance with the following scale:

Points Criterion.

25 The task has been completed in full.

24 The task is completed in full. There are small comments on the organisation of the

code structure and interface.

16

Points Criterion.

22-23 The task is mostly completed. There are comments on the organisation of the code

structure and interface.

20-21 The task is completed, but not in full. The program works, but some requirements

or features specified in the assignment are not implemented.

18-19 The task is completed, but not in full. The programme works, but two or three

requirements or features specified in the assignment are not implemented.

16-17 The task is completed, but not in full. The programme is working, but four or five

requirements or capabilities specified in the assignment have not been

implemented.

11-15 The task is completed, but not in full. The programme works, but more than five

requirements or features specified in the assignment are not implemented.

7-10 The programme at least allows you to perform one action (capability) correctly.

3-6 The programme runs, but contains gross errors, no task or requirement is fully

completed.

2 The programme does not correspond to the task statement.

1 The programme does not contain the programme code developed by the student.

0 The programme has obvious signs of non-independence of its development.

RECOMMENDED LITERATURE

Basic

1. Griffiths D. Head first Kotlin / D. Griffiths, D. Griffiths. — Beijing

Boston Farnham Sebastopol Tokyo : O’Reilly, 2019. — 448 p.

2. Griffiths D. Head First Android Development: A Learner's Guide to

Building Android Apps with Kotlin / D. Griffiths, D. Griffiths. — Beijing Boston

Farnham Sebastopol Tokyo : O’Reilly, 2021. — 890 p.

3. Sills B. Android programming: The Big Nerd Ranch guide / B. Sills, B.

Gardner, K. Marsicano, C. Stewart. — Atlanta, GA : Big Nerd Ranch, 2022. —

667 p.

4. Поляков А. О Аналіз методів і технологій розроблення мобільних

додатків для платформи Android : навчальний посібник [Електронний ресурс] /

Поляков А. О, Федорченко В. М, Шматко О. В. — Харків : ХНЕУ імені

С. Кузнеця, 2017. — 286 p. URL:

http://repository.hneu.edu.ua/handle/123456789/20105

Additional

5. Jemerov D. and others Kotlin in Action / D. Jemerov, S. Isakova. —

Shelter Island, NY : Manning Publications Co, 2017. — 334 p.

6. Laurence P.-O. Programming Android with Kotlin: Achieving

Structured Concurrency with Coroutines / P.-O. Laurence, A. Hinchman-Dominguez,

G. B. Meike, M. Dunn. — Beijing Sebastopol, CA : O’Reilly, 2022. — 336 p.

http://repository.hneu.edu.ua/handle/123456789/20105

17

7. Tigcal J. Simplifying Android Development with Coroutines and Flows /

J. Tigcal. — Birmingham, UK : Packt Publishing, Limited, 2022. — 159 p.

8. Muschko B. Gradle in action / B. Muschko. — Shelter Island, NY :

Manning, 2014. — 456 p.

9. Tuominen T. RxJava for Android Developers / T. Tuominen. — Shelter

Island, NY : Manning Publications Co., 2019. — 514 p.

10. Федорченко В. Аналіз ефективності технологій розроблення

мобільних застосунків для OC Android / В. Федорченко, А. Поляков, О.

Сєвєрінов // Вісник ХНАДУ — 2022. — Вип. 96. — P. 81–90.

Information resources

11. Kotlin Docs | Kotlin [Електроний ресурс] // Kotlin Help. — Електрон.

дані. — Режим доступу: https://kotlinlang.org/docs/home.html.

12. Download Android Studio & App Tools - Android Developers

[Електроний ресурс] // Електрон. дані. — Режим доступу:

https://developer.android.com/studio.

13. Android Compose Tutorial | Jetpack Compose | Android Developers

[Електроний ресурс] // Android Developers. — Електрон. дані. — Режим

доступу: https://developer.android.com/jetpack/compose/tutorial.

14. Design for Safety | App quality | Android Developers [Електроний

ресурс] // Android Developers. — Електрон. дані. — Режим доступу:

https://developer.android.com/quality/privacy-and-security.

15. Fragments | Android Developers [Електроний ресурс] // Android

Developers. —Електрон. дані. — Режим доступу:

https://developer.android.com/guide/fragments.

16. Fundamentals of testing Android apps | Android Developers

[Електроний ресурс] // Android Developers. —Електрон. дані. — Режим доступу:

https://developer.android.com/training/testing/fundamentals.

17. Services overview | Background work [Електроний ресурс] // Android

Developers. — Електрон. дані. — Режим доступу:

https://developer.android.com/develop/background-work/services.

18. Мобільні технології (6.04.121) [Електронний ресурс] / Розробники

Андрій Поляков, Володимир Федорченко // Персональні навчальні системи

ХНЕУ ім. С. Кузнеця — Електрон. дані. — Режим доступу:

https://pns.hneu.edu.ua/course/view.php?id=1366.

https://kotlinlang.org/docs/home.html
https://developer.android.com/studio
https://developer.android.com/jetpack/compose/tutorial
https://developer.android.com/quality/privacy-and-security
https://developer.android.com/guide/fragments
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/develop/background-work/services
https://pns.hneu.edu.ua/course/view.php?id=1366

