
MIHICTEPCTBO OCBTTVT I HAYKIT YKPAIHII
xApKIB cbKI,Ifr HAIII oHAJIb Hnfr nH oHoMr.IHLrfr yHrBE p c trrnT

IMEHI CEMEHA KY3HEII'I

is,! 1.

3ATBEPA}KBHO
Ha gaciAausi rca$e4pn
in Q oprr,raqifi Hux crrcreM
flpororon J\b 1 nia 22.08.2023 p.

fanysr 3HaHb

CneqiairsHicrr

OcsirHifi pieenr

OceirHs rrporpaMa

Craryc Aucquuninz

Mon a BLrKJraAaHHs, HaBrr au:as. ra o q isroB ann.f,

Pospo6Hur:
K.T.H., AOIIeHT

3ani.4ynau xa$e4pn
in O opnaarlifi Hrax cr{creM

fapanr [porpaMr,r

CYqACHI TEXHOJIOTil IPOIPAMYBAHHfl,
po6oua rporpaMa HaBrraJrbHoi Alrcqun"uinn (PIIHA)

12 "InQopnaaqifiHi rexHo.rrorii"

l2l ttlnxeHepin nporpaMHoro sa6esne.reHHfltt

neprunfi (6arca"rranpcrxufi)
ttlnxeuepin [porpaMHoro ga6erne.reHHfl tt

o-MeroAuquoi po6oru

ina HEMAIIIKAJIO

nr.r6ipnona

anr"rrificbKa

Anapifi ilOJItKOB

,{nar.rrpo FOHAAPEHKO

Orer OPOJIOB

Xaprcin
2024

uiAuucano KEII

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

APPROVED
at the meeting of the department
information systems
ProtocolNo. 1 of 22.08.2023

Field of knowledge
Specialty
Study cycle
Study programme

Course stafus

Language

Developer:
Ph.D. (Technical sciences),
associate professor
Head of Information systems
department:
Ph.D. (Technical sciences),
associate professor

Head of Study Programme:
Ph.D. (Technical sciences),
associate professor

ional and methodological

Karina NEMASHKALO

MODERN TECHNOLOGY OF PROGRAMMING
Program of the course

L2 "Information technologiest'
l21 " Software engineering"
first (undergraduate)
" Soffware Engineeringtt

elective
English

digital signature Andrii POLIKOV

Dmytro BONDARENKO

Oleg FROLOV

Kharkiv
2024

3

INTRODUCTION

Modern Programming Technologies is at the forefront of programming

innovation, providing students with the latest technologies and trends. In today's

world, programming is based on a continuous process of learning and adapting to

change, and this discipline is designed to prepare students for such a dynamic

environment. The course is based on working with RESTful APIs, peculiarities of

virtualisation and containerisation technology using Docker, using AWS cloud

services, the basics of working with CI/CD processes, and the practice of

implementing the infrastructure-as-code concept through Terraform. Students acquire

not only theoretical knowledge, but also apply it in practice, working in real

environments. This allows students to understand how modern software systems

function and effectively integrate into the professional field of programming. The

discipline provides skills and knowledge that will help you navigate the dynamic

world of modern programming technologies in the future.

Studying the discipline "Modern Programming Technologies" involves

mastering the skills of development and design using modern technologies such as

RESTful API, virtualisation and containerisation through Docker, using AWS cloud

services, working with CI/CD processes and implementing the principles of

"infrastructure as code" through Terraform. It allows to train specialists capable of

working effectively in a modern software environment.

The purpose of teaching the course "Modern Programming Technologies" is to

develop students' theoretical knowledge and practical skills in the field of modern

programming technologies and methods. This includes the ability to develop and

apply highly efficient programming technologies, as well as create, design, and

manage systems based on microservice architecture. Higher education applicants

must master the skills of using RESTful APIs, virtualisation, and containerisation

technologies (Docker), cloud services (AWS), CI/CD technologies, working with

databases and implementing the concept of "infrastructure as code". Working with

the training material allows you to develop the skills of independent work, critical

thinking, teamwork and presentation of your own ideas and software developments.

Tasks of the course are:

- developing a modern view of software development processes using the

latest technologies and practices;

- to get acquainted with the principles of operation and specifics of RESTful

API development;

- learn the basics of virtualisation and containerisation of applications using

Docker;

- learn the CI/CD processes and their importance in modern software

development;

- learn the principles of working with cloud services on the example of AWS

and developing serverless applications;

- learn infrastructure as code on the example of Terraform;

- acquire teamwork skills and use of version control systems;

4

- acquire critical thinking and professional skills necessary for continuous

self-improvement in the field of IT.

The subject of the discipline is the study of the basic principles, approaches,

and methods of designing, developing and testing modern software systems,

integrating various system components, using cloud technologies and serverless

architectures, as well as implementing a continuous integration and delivery cycle.

The subject of the discipline is modern methods, technologies and tools used in

the design, development, release and support of software products and systems. This

includes components such as RESTful APIs, Docker, CI/CD processes, developing

basic infrastructure objects through code using Terraform, using AWS cloud services

and implementing the serverless concept.

The learning outcomes and competences formed by the course are defined in

Table 1.

Table 1

Learning outcomes and competences formed by the course

Learning outcomes Competences

LO07 GC05, SC13

LO12 SC03, SC14

LO17 GC02, SC12

LO18 GC06, SC12

LO21 GC02, SC08

where, LO07. To know and to apply in practice the fundamental concepts, paradigms and

basic principles of functioning of language, tool and computing software engineering tools.

LO12. Apply effective software design approaches in practice.

LO17. Be able to apply component-based software development methods.

LO18. Know and be able to apply information technologies for data processing, storage and

transmission.

LO21. To know, analyze, select, and competently apply information security (including

cyber security) and data integrity tools in accordance with the applied tasks and software systems

being developed.

GC02. Ability to apply knowledge in practical situations.

GC05. Ability to learn and master modern knowledge.

GC06. Ability to search, process and analyze information from various sources.

SC03. Ability to develop architectures, modules and components of software systems.

SC08. Ability to apply fundamental and inter disciplinary knowledge to successfully solve software

engineering problems.
SC12. Ability to carry out the system integration process, apply change management standards and

procedures to maintain the integrity, overall functionality and reliability of the software.

SC13. Ability to reasonably choose and master tools for software development and maintenance.

SC14. Ability to think algorithmically and logically.

5

COURSE CONTENT

Content module 1. Designing, developing, and managing RESTful service

APIs.

Topic 1. Development of RESTful services, their limitations and

design.
1.1. Introduction to the discipline. Control measures and learning outcomes.

1.2. What is an API? The evolution of the REST/JSON API.

1.3. Introduction to RESTful APIs, private, public and partner APIs, API value

chain.

1.4. Introduction to the limitations of the REST architecture.

Topic 2. REST API templates.
2.1. REST API error handling templates.

2.2. REST API version control templates: change processing, API version

control, implementation of ACME API version control.

2.3. REST API Cache Management Pattern: design and concept of the cache

API, cache management directive, implementation of the cache API using cache

management directives.

2.4. REST API response data processing template: partial responses and their

implementation, pagination, and their implementation.

Topic 3. REST API security and OpenAPI specification v3.1.0,

Swagger, API management.
3.1. API protection with basic authentication, tokens and JWT, API key and

secret, API authorisation using OAuth2.0, functional attacks.

3.2. Requirements analysis process, introduction to REST and Swagger/OAI

specifications.

3.3. Implementation of API governance, API lifecycle, API developer portal,

API security/traffic management, API Analytics, API sales, and API monetisation.

Content module 2. Fundamentals of virtualisation and containerisation of

applications and services.
Topic 4. Fundamentals of virtualisation and containerisation. Fundamentals

of the Docker platform.

4.1. Containerisation and virtualisation, introduction to Docker, Docker

architecture, containers, and images, docker cli, container management, lifecycle.

4.2. Basics of creating images (Dockerfile): commands FROM; WORKDIR,

COPY, ADD; RUN; ENV, LABEL, USER; VOLUME and EXPOSE; VOLUME and

EXPOSE; VOLUME and EXPOSE.

4.3. Images for production environments: parameterising Docker files with

ARGs, creating and running reusable images, build time vs. runtime, creating smaller

images, multi-stage image creation, creating a base image from scratch, application

servers to run, hardware for production-level databases, implementing a proxy, the

need for automation.

6

Topic 5. Basics of working with data in a container and image

repository.
5.1. Docker volumes: storage issues, volume types.

5.2. Docker registries, setting up the local Docker registry, Docker HUB,

searching for and running images.

Topic 6. Orchestration of containers. docker composer.
6.1. Running containers in Docker: Running production containers in Docker,

Docker Compose basics.

6.2. Docker Compose File: version and volumes, networks, services, image

management, and application lifecycle with Docker Compose.

6.3. Docker Swarm: Swarm architecture and services, preparing Swarm with

Docker Machine, autonomous containers and services in Swarm, service modes and

login routing grid, application stack in Swarm, environment and application lifecycle

in Swar, brief description of Docker Runtime Environment.

Content module 3. Designing and developing CI/CD processes.

Topic 7. The concept of CI. Jenkins.
7.1. The concept of continuous integration, delivery and deployment (CI/CD).

7.2. 7.2. Jenkins architecture: configuration and setup, plugins, security,

backup, secret storage.

7.3. Jenkins Job: Job configuration, Jenkins scripts, Job parameterisation,

logical input in Jenkins Job, continuous integration (CI).

7.4. Pipeline in Jenkins: declarative and scripted pipelines.

Topic 8. Types of deployment. Jenkins Pipeline.
8.1. Deployment: Blue/Green, Canare, A/B.

8.2. Continuous deployment (CD) with Jenkins. Infrastructure as code.

8.3. 8.3. Jenkins DSL operation, Jenkins as a code pipeline, Distributed builds

in Jenkins, Jenkins integration with Docker, Jenkins security aspects.

Content module 4. Cloud technologies and Cloud-native applications.

Infrastructure as Code (IaC).

Topic 9. Introduction to AWS, identity and access management, AWS

Computing.
9.1. Getting started with AWS Cloud: What is AWS? AWS global

infrastructure. Interaction with AWS. Creating an AWS account

9.2. Security in AWS: Security and the AWS shared responsibility model.

Protecting the AWS root user. Approaches to protecting your AWS account.

9.3. Identity and access management in AWS: An introduction to identity and

access management in AWS. Role-based access in AWS. Demonstration of AWS

IAM. Hosting an employee directory application on AWS. Default Amazon Machine

Image (AMI) for Amazon EC2.

9.4. AWS Compute: Computing as a Service on AWS. Introduction to Amazon

Elastic Computing Cloud. The life cycle of an Amazon EC2 instance. Container

services on AWS.

7

Topic 10. Topic 10. AWS networking, storage, and databases.

10.1. Working in the AWS network: Networking on AWS. Introduction to

Amazon VPC. Amazon VPC routing. Protecting your network with Amazon VPC

Security. Hybrid connectivity with AWS.

10.2. 1Create a VPC and restart the enterprise directory application on

Amazon EC2.

10.3. Types of storage on AWS: Amazon EC2 Instance Storage and Amazon

Elastic Block Store. Object storage with Amazon S3. Choosing the right service for

data storage. Create an Amazon S3 Bucket.

10.4. Databases on AWS. Study of databases on AWS. Amazon's relational

database service. Specialised databases on AWS. Introduction to Amazon

DynamoDB. Choosing the right AWS database service.

Topic 11. Infrastructure as a Code (IaC). Terraform.

11.1. What is Infrastructure as a Code (IaC)? The advantages of infrastructure

as code, the basics of Terraform. Comparison of Terraform with other IaC tools.

11.2. Working with Terraform. Preparing your AWS account. Installing

Terraform. Deploying a single server, a single web server, a configured web server, a

cluster of web servers, a load balancer. Removing unnecessary resources.

11.3. Reusing infrastructure with Terraform modules: what is a module? Input

parameters of the module, local and output variables of the module. Features of using

modules. Version management.

11.4. Working with Terraform: loops, conditional expressions, deployment,

and features of use: loops, conditional expressions, zero-downtime deployment.

Topic 12. Serverless applications. Introduction to AWS Lambda.
12.1. Cloud application factors.

12.2. AWS CLI and API. Introduction to the AWS API Management Console

CLI SDK. Introduction to the AWS CLI. Cloud9, AWS API, AWS CLI. Exploring

the AWS SDK (Java). Using temporary credentials in AWS Cloud9. Serverless

application model. AWS toolkit for IntelliJ. Cloud9 Temporary Credentials, AWS

SDK, AWS Toolkits, AWS SAM - Java. Setting up and exploring the SDK

12.3. Introduction to API-based design. API-based development. What is an

API gateway? Dragon API: API gateway terminology. What is API Gateway Notes,

API Driven Dev Notes. Models and mappings. Creating a GET API using integration

simulation. Publishing an API. Using Postman to create requests. Stages of the API

gateway, deployment, invocation, Postman.

12.4. API authentication. Introduction to authentication and API gateway.

Access control to the API gateway. Authentication and authorisation of the API

gateway. Introduction to Amazon Cognito. Using Amazon Cognito to sign in and

invoke the API Gateway. Using Amazon Cognito to log in and invoke an API

gateway using JavaScript.

12.5. Serverless computing and lambda. Introduction to AWS Lambda.

Executing AWS Lambda. AWS Lambda permissions. Introduction to Lambda,

Lambda execution, Lambda permissions. Triggers, Push, Pull model. Reusing the

context of a lambda execution. AWS Lambda compliance. Asynchronous and

synchronous responses.

8

Aliases and versions. Creating an AWS lambda function in Java. Creating and

debugging a lambda using the AWS Toolkit for IntelliJ. Creating a lambda function,

version and aliases.

The list of laboratory classes in the course is given in Table 2.

Table 2

The list of laboratory studies
Name of the topic

and/or task

Content

Topic 1 – 3 Design and development of RESTful APIs using Swagger and modern

frameworks

Topic 4 – 6 Exploring containerisation tools and creating an application image

Topic 7, 8 Building a CI/CD automation process

Topic 9 – 11 Infrastructure development in AWS with Terraform.

Topic 12 Cloud-native application development in AWS

The list of independent work in the course is given in Table 3.

Table 3

List of self-studies
Name of the topic

and / or task

Content

Topic 1 – 12 Study of lecture material

Topic 1 – 12 Preparing for laboratory classes

Topic 1 – 12 Preparing for the current control work
Topic 1 – 12 Preparing for the exam

The number of hours of lectures and laboratory studies and hours of self-study

is given in the technological card of the course.

TEACHING METHODS

In the process of teaching the course, the following teaching methods are used

to achieve certain learning outcomes and intensify the educational process

Verbal (lecture (Topics 1, 2, 4, 7, 9, 12), problem lecture (Topics 1 - 3, 7, 8),

lecture-visualisation (Topics 1 - 12)).

In person (demonstration (Topics 1 - 12)).

Laboratory work (Topics 1 - 12), case method (Topics 1 - 3, 6, 8, 10, 11).

FORMS AND METHODS OF ASSESSMENT

The University uses a 100-point cumulative system for assessing the learning

outcomes of students.

Current control is carried out during lectures, laboratory classes and aims at

checking the level of readiness of the student to perform a specific job and is

evaluated by the amount of points scored:

9

− for courses with a form of semester control as an

exam: maximum amount is 60 points; minimum amount

required is 35 points.
The final control includes current control and an exam.

Semester control is carried out in the form of a semester exam.

The maximum number of points that a student of higher education can receive

during the examination (examination) is 40 points. The minimum amount for which

the exam is considered passed is 25 points.

The final grade in the discipline is determined by summing the points for the

current and final control.

During the teaching of the discipline, the following control measures are used:

Current control: defence of laboratory works (32 points), current control works

(10 points), presentations (18 points).

Semester control: Exam (40 points)

More detailed information on the assessment system is provided in

technological card of the course.

An example of an exam card and assessment criteria.

Semyon Kuznets Kharkiv National University of Economics

First (bachelor) level of higher education

Specialty "Software Engineering"

Educational program "Software engineering"

Term II

Навчальна дисципліна «Modern technology of programming»

EXAM CARD № 1

Task 1. Test.

Question No. 1

Which of the following is true about AWS

Choose one of 4 answers:

1) EC3 is a provider of analytics as a service

2) Amazon Elastic Cloud - a system for creating virtual disks

3) SimpleDB works with Amazon EC2 and Amazon S3

4) None of the above

Question No. 2

Assume that a subnet is created and an EC2 instance is running on it with the default

settings. Which of the following options will be ready to use in the EC2 instance as soon as

it is launched?

Choose one of 4 answers:

1) Elastic IP

2) Public IP

3) Private IP

4) Internet Gateway

10

Question No. 3

In the Swagger definition, what defines each endpoint in a section that contains all

endpoints?

Choose one of 4 answers:

1) absolute URL

2) query string

3) relative URL

4) HTTP method

Question No. 4

The Docker container is often described as an improvement over some other technology?

Choose one of 4 answers:

1) virtual machines

2) cloud computing

3) DevOps

4) microservices

Question No. 5

Which sentence best describes Docker?

Choose one of 4 answers:

1) None of the above

2) Once built, run everywhere

3) Easy to operate - much more enjoyable

4) Build once, run twice

Question No. 6

What HTTP verb is usually used to update or create a resource in the API?

Choose one of 4 answers:

1) POST

2) WRITE

3) SUBMIT

4) CREATE

Question No. 7

What is one of the advantages of GraphQL over REST approaches??

Choose one of 4 answers:

1) more secure by default

2) flexibility of requests/responses

3) compatibility with a large number of gateways

4) more stable APIs

Question No. 8

What are the benefits of auto-scaling?

Choose one of 4 answers:

1) Fault tolerance

2) Better availability

3) Better cost management

4) All of the above

11

Question No. 9

_________ are instances of Docker images that can be run with the command

Docker run

Choose one of 4 answers:

1) Container

2) File

3) Cloud

4) Hub

Task 2.

Working with containerised applications

1. Deploying the container:

a. Upload the image httpd:2.4.57-alpine to the local repository. (Take a screenshot of the

process and the result, give the command).

b. Display the list of available images on the docker server (Take a screenshot of the result)

c. Create a container from the image httpd:2.4.57-alpine, name it with the first letter of your

full name and run it. (Run the command, take a screenshot of the result)

d. Print the list of executable containers. (Run the command, take a screenshot of the result)

e. Connect to the container and examine it (bash or sh. Run commands, take a screenshot of

the result):

i. display information about the version and name of the operating system from the

files (/etc/*release);

ii. get the name of the container (hostname);

iii. get information on the apach version (httpd -v).

f. Stop the container and display a list of all containers. (Run the command, take a

screenshot of the result).

g. Restore the container. (Give the command, take a screenshot of the result)

2. Service deployment:

a. Create another container from the httpd:2.4.57-alpine image with the configuration to

forward port 80 from the container to 8083 of the host OS. (Take a screenshot of the process and

the result, run the command)

b. Check in your browser that the nginx service is available at http://localhost:8083 or from

the host console with the command "curl http://localhost:8083"

Approved at the meeting of the Department of Information Systems

protocol No. ____ from «___»__________20___р.

Examiner _________________ Ph.D., associate professor, Andrii POLIKOV

Head

of the Department _________________ Ph.D., associate professor. Dmytro BONDARENKO

Question No. 10

What types of query input parameters can be used in Swagger?

Choose one of 4 answers:

1)
Use 'host' for the host input parameter, 'port' for the port input parameter, 'method' for the

method input parameter.

2) There are no input query parameters in the Swagger definition.

3)
Use 'path' for the URL input parameter, 'query' for the query string input parameter, 'body'

for the query body input parameter

4)
Use 'url' for the URL input parameter, 'querystring' for the query string input parameter,

'content' for the query body input parameter

12

Evaluation criteria

The final score for the exam is the sum of the scores for all tasks, rounded to the nearest

whole number according to the rules of mathematics.

The algorithm for solving each task includes separate stages that differ in complexity, labour

intensity and importance for solving the task. Therefore, individual tasks and stages of their solution

are evaluated separately from each other as follows:

Task 1 (test).

The first question is dedicated to testing theoretical knowledge of the discipline. The test

includes 10 questions worth 1.5 points each. A total of 15 points. The test lasts 20 minutes.

Task 2 (heuristic).

The second question is devoted to the development of the application deployment process

using the Docker containerised environment. Configuration files are written using the YAML

language and bash commands. A set of commands is being developed that allows you to manage

the life cycle of containers with an application and monitor the environment. The student must use

the Visual Code, Docker, Linux and bash environments. In this case, the applicant is allowed to use

existing reference literature. After checking the application, the applicant receives K1 points

according to the following requirements (Table 4).

Table 4

Assessment criteria for the diagnostic task

The second task is scored from 0 to 25 points. The number of points for the second task is

determined in accordance with the following scale:

Scores

К1

Requirements

25 The task has been completed in full.

24 The task is completed in full. There are small comments on the organisation of the

code structure and interface.

22 – 23 The task is mostly completed. There are comments on the organisation of the code

structure and the organisation of the deployment environment.

20 – 21 The task is complete, but not in full. The container project is working, but some of

the requirements or capabilities for the deployment environment specified in the

assignment have not been implemented.

18 – 19 The task is complete, but not in full. The container design is working, but two or

three requirements or capabilities of the deployment environment specified in the

assignment are not met.

16 – 17 The task is complete, but not in its entirety. The container design is working, but

four or five of the requirements or capabilities for the deployment environment

specified in the assignment are not met.

11 – 15 The task is complete, but not in its entirety. The container design is working, but

more than five requirements or capabilities of the deployment environment

specified in the task are not met.

7 – 10 The container design at least enables one deployment environment functionality to

be performed correctly.

3 – 6 The container runs, but contains gross errors, and none of the deployment

environment requirements specified in the assignment are fully met.

2 The container or environment does not meet the task statement.

1 The design of the container or environment does not contain any code developed by

the student.

0 No programme available.

13

RECOMMENDED LITERATURE

Main

1. Varanasi B. and others Spring REST: Building Java Microservices and

Cloud Applications / B. Varanasi, M. Bartkov. — Berkeley, CA : Apress, 2022. —

251 p.

2. Gkatziouras E. A Developer’s Essential Guide to Docker Compose Simplify

the Development and Orchestration of Multi-Container Applications / E. Gkatziouras.

— Birmingham : Packt Publishing, Limited, 2022. — 264 p.

3. Nickoloff J. and others Docker in action / J. Nickoloff, S. Kuenzli, B. Fisher.

— Shelter Island, NY : Manning Publications Co, 2019. — 310 p.

4. Laster B. Jenkins 2: Up and Running: Evolve Your Deployment Pipeline for

Next Generation Automation / B. Laster. — Sebastopol, CA : O’Reilly Media, 2018.

— 577 p.

5. Culkin J. and other. AWS cookbook: recipes for success on AWS /

J. Culkin, M. Zazon. — Beijing Boston Farnham Sebastopol Tokyo : O’Reilly, 2021.

— 330 p.

6. Winkler S. and others Terraform in action / S. Winkler, A. Dadgar. —

Shelter Island, NY : Manning, 2021. — 380 p.

Additional

7. Walls C. Spring in action / C. Walls. — Shelter Island, NY : Manning

Publications Co, 2022. — 492 p.

8. Leszko R. Continuous delivery with Docker and Jenkins: delivering

software at scale / R. Leszko. — Birmingham Mumbai : Packt Publishing, 2017. —

309 p.

9. Wittig M. and others Amazon Web Services in action / M. Wittig, A. Wittig,

B. Whaley. — Shelter Island, NY : Manning, 2019. — 497 p.

10. Wadia Y. and others Mastering AWS Lambda. Learn how to build and

deploy serverless applications / Y. Wadia, U. Gupta. — Birmingham : Packt

Publishing, Limited, 2017. — 296 p.

11. Brikman Y. Terraform: up & running: writing infrastructure as code / Y.

Brikman. — Beijing Boston : O’Reilly, 2021. — 341 p.

Information resources

12. API Documentation & Design Tools for Teams | Swagger [Електроний

ресурс]. — Режим доступу: https://swagger.io/.

13. About Swagger Specification | Documentation | Swagger [Електроний

ресурс] — Режим доступу: https://swagger.io/docs/specification/about/.

14. Docker: Accelerated Container Application Development [Електроний

ресурс] — Режим доступу: https://www.docker.com/.

15. Overview of get started [Електроний ресурс] // Docker Documentation.

— Електрон. дані. — Режим доступу: https://docs.docker.com/guides/get-started/.

https://swagger.io/
https://swagger.io/docs/specification/about/
https://www.docker.com/
https://docs.docker.com/guides/get-started/

14

16. Jenkins [Електроний ресурс] // Jenkins. — Електрон. дані. — Режим

доступу: https://www.jenkins.io/.

17. User Handbook Overview [Електроний ресурс] // User Handbook

Overview. — Електрон. дані. — Режим доступу:

https://www.jenkins.io/doc/book/getting-started/.

18. Terraform by HashiCorp [Електроний ресурс] // Terraform by

HashiCorp. — Електрон. дані. — Режим доступу: https://www.terraform.io/.

19. Build a Serverless Web Application with AWS Lambda, Amazon API

Gateway, AWS Amplify, Amazon DynamoDB, and Amazon Cognito [Електронний

ресурс] // Amazon Web Services, Inc. — URL: https://aws.amazon.com/getting-

started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-

cognito/.

20. Cloud Computing Services - Amazon Web Services (AWS)

[Електронний ресурс]. – Режим доступу: — URL: https://aws.amazon.com/.

21. Welcome to AWS Documentation [Electronic resource] [Електронний

ресурс]. – Режим доступу: — URL: https://docs.aws.amazon.com

22. Сучасні технології програмування (6.04.121) [Електронний ресурс] /

Розробники Андрій Поляков, Олег Фролов // Персональні навчальні системи

ХНЕУ ім. С. Кузнеця — Електрон. дані. — Режим доступу:

https://pns.hneu.edu.ua/course/view.php?id=8632.

https://www.jenkins.io/
https://www.jenkins.io/doc/book/getting-started/
https://www.terraform.io/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/
https://docs.aws.amazon.com/
https://pns.hneu.edu.ua/course/view.php?id=8632

