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Abstract A method is proposed for solving the problems of optimal design of cyclically symmetric structures under
static loading, which has been tested on critical structural elements of hydraulic turbines. One of the basic
problems in the design of hydraulic turbines is considered, namely, ensuring their strength and reliability
under continuous operation under the influence of a static loading. The problem of optimal design of the
initial and modified covers of a rotary-blade hydraulic turbine operating in the normal mode has been
solved. A Kaplan turbine cover is a complex spatial structure consisting of thin-walled elements.
Therefore, the finite element method is used for the calculation to most fully take into account the design
features and the spectrum of external influences acting during operation. As the initial design, covers with
an initial and modified hole in the rib were selected. The geometric parameters of the cover are modified to
minimize the cover weight. The thicknesses of structural elements are taken as design variables. The
minimum and maximum thicknesses, as well as maximum stress intensity values are limited. The objective
function is the cover weight. The problem of optimal design is solved with the help of the gradient method
using a finite-difference analogue of a gradient of the objective function. The distribution of axial
displacements and stress intensity in the original and modified cover design during normal operation was
obtained. It was found that the mass of the cover structure was reduced by 30%, and the rolled stock
thickness range was downsized by five positions, which is significant in the manufacture of a new design.
In this case, the stress values in the optimal structure during the modification of the hole in the ribs did not
exceed the admissible values. The proposed approach will subsequently be applied to the analysis of
elements of aircraft structures.
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Abstract. A method is proposed for solving the problems of optimal design of
cyclically symmetric structures under static loading, which has been tested on
critical structural elements of hydraulic turbines. One of the basic problems in
the design of hydraulic turbines is considered, namely, ensuring their strength
and reliability under continuous operation under the influence of a static loading.
The problem of optimal design of the initial and modified covers of a rotary-
blade hydraulic turbine operating in the normal mode has been solved. A Kaplan
turbine cover is a complex spatial structure consisting of thin-walled elements.
Therefore, the finite element method is used for the calculation to most fully take
into account the design features and the spectrum of external influences acting
during operation. As the initial design, covers with an initial and modified hole
in the rib were selected. The geometric parameters of the cover are modified to
minimize the cover weight. The thicknesses of structural elements are taken as
design variables. The minimum and maximum thicknesses, as well as maximum
stress intensity values are limited. The objective function is the cover weight.
The problem of optimal design is solved with the help of the gradient method
using a finite-difference analogue of a gradient of the objective function. The
distribution of axial displacements and stress intensity in the original and
modified cover design during normal operation was obtained. It was found that
the mass of the cover structure was reduced by 30%, and the rolled stock
thickness range was downsized by five positions, which is significant in the
manufacture of a new design. In this case, the stress values in the optimal
structure during the modification of the hole in the ribs did not exceed the
admissible values. The proposed approach will subsequently be applied to the
analysis of elements of aircraft structures.
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1 Introduction

When designing hydraulic turbines, one of the main problems is to ensure their strength
and reliability during continuous operation under the influence of static and dynamic
loadings [1–3].

The specific feature of a hydroelectric power station workflow requires special
design solutions that ensure reliable operation of units and structures, one of which is
the cover of a hydraulic turbine. It is a large-size welded fixed ring part that limits the
flow part from above and serves as a base for accommodating guide apparatus parts.

Despite significant achievements in the study of the strength of cyclically sym-
metric metal structures, the study of their reliability remains relevant. That is why,
design of hydropower turbines for hydroelectric power plants requires methods for
determining their strain-stress state, allowing to create design models with sufficient
accuracy [4].

Typically, the shape of impellers of a hydraulic turbine is optimized [5–7]. The
problems of optimal cover design are less studied [8, 9].

In this work, the strain-stress state of a Kaplan turbine cover is analyzed using
advanced effective methods and programs for calculating the strength and character-
istics of welded load-bearing structures. The methods and programs are based on the
elasticity theory the finite element method and the theory of thin plates and shells [10–
13]. The optimization problem is solved using the gradient method [14, 15].

The aim of the paper is optimal design of the initial and modified Kaplan turbine
cover configurations. The objective function is the cover weight. The optimization
parameters are the thicknesses of the structural elements.

2 Model of a Kaplan Turbine Cover

A finite-element cover model of a Kaplan turbine under static axisymmetric load is
offered. The cover is a spatial cyclically symmetric structure consisting of thin-wall
shells of revolution joined by n ribs. The ribs are meridional plates of complex con-
figuration. Thus, the cover consists of sectors, on whose boundaries the conditions of
cyclic symmetry are satisfied. The development of a model with such structures begins
with developing a sector model.

When constructing a sector model, the key points in the plane of the rib, along
which the lines are drawn, are first defined, and then a rib model is created. To obtain
the shell parts of the structure and a complete sector model, the lines of intersection of
ribs and shell surfaces are rotated clockwise and counterclockwise through an angle of
360/(2n), where n is the number of sectors.

Since the cover is a spatial structure consisting of thin-wall elements, for which the
ratio of the thickness of the structural elements and the characteristic size does not
exceed 1/10, the theory of thin plates and shells is used. The system of governing
equations is.
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K½ � uf g ¼ Ff g;

where K½ � is stiffness matrix; uf g is vector of nodal displacements; Ff g is vector of
forces determining the influence of external loads.

To solve the problem, a triangular elastic shell finite element with three nodes is
used. An element in each node has six degrees of freedom, namely displacements in the
direction of the coordinate X, Y and Z axes and rotations about them.

The model is divided into finite elements, after which the conditions of cyclic
symmetry, as well as the conditions of structure fixing and loading are introduced at the
boundaries with neighboring sectors.

Figure 1 shows the scheme of the cover. To place the mechanisms and reduce the
cover weight, round holes are provided in the ribs. Curved holes are created in the
annular plates in the form of a blade profile, which are designed for dismantling and
repairing individual blades without completely disassembling the guide apparatus. The
cover has such overall dimensions: diameter 3.44 m; height, 1.05 m.

The cover is made of sheet steel St20 or its analog ASTM A516 Gr.60. The
mechanical properties of the material are as follows: E = 2.1 ⋅105 MPa is Young’s
module; m = 0.3 is Poisson’s ratio; q = 7850 kg/m3 is material density; rs ¼ 215 MPa
is yield strength; rs ¼ 430 MPa is ultimate strength; ½r� ¼ 0:5 � rs ¼ 107:5 MPa is
admissible stress.

The design scheme is adopted as a cover sector with a solution angle of 90° and
symmetry conditions at the boundaries (see Fig. 2).

The conditions are introduced for fixing the cover on the supporting surface of the
flange connecting it to the stator ring, which is considered absolutely rigid, along the
circumference on which the studs of the flange connection are located.

Figure 3 shows the scheme of cover loading and fastening. The weight of the
generator and impeller is taken into account in the form of equivalent pressure P ¼
2:45 � 105 N applied to the surface of the upper ring (see Fig. 3).

Fig. 1. Kaplan turbine cover.
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In the normal mode, the hydraulic pressure q2 = 0.0965 MPa is applied to the
bottom. During an emergency shutdown of the turbine unit, the pressure in the supply
pipe from the radius of the circle RL, on which the guide apparatus vanes are located to
the circle radius on which the studs of the flange connection RS are located, rises
sharply from q2 to q1 = 0.1254 MPa. Therefore, numerical results are presented pre-
cisely for this case.

In Fig. 3, the dotted line shows the contour of a modified hole in the cover rib to
place equipment and reduce the weight. The radius of this hole is increased 1.5 times
relative to the original one. Figure 4 shows the finite element model of the cover sector.

Fig. 2. Cover sector.

Fig. 3. Scheme of cover loading and fastening.
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3 Stress Analysis of the Cover

First, we obtain the distribution of axial displacements (Fig. 5) and stress intensity
(Fig. 6) in the cover in the normal mode.

Maximum stresses occur in the ribs, which are located in the duct where the vanes
of the guide apparatus pass. In Fig. 6, the arrow (!) shows the zone of highest stress
concentration. Calculation yields zones where maximum displacements occur. They
are located in the duct on the guide apparatus side. The maximum displacement and

Fig. 4. Finite element model of the cover sector.

Fig. 5. Distribution of axial displacements in the cover sector.
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stresses have the following values: umax ¼ 3:6 � 10�4 m and rmax ¼ 30:15 MPa,
respectively.

Similar distributions of axial displacements and stress intensities in the cover in the
normal mode were obtained when the hole was modified (see Fig. 3). The calculation
results are shown in Fig. 7 and Fig. 8.

Fig. 6. Distribution of stress intensity in the cover sector.

Fig. 7. Distribution of axial displacements in the cover sector with the modified hole.
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4 Statement of the Optimal Design Problem

In a broad sense, the general problem of nonlinear programming consists in finding the
extreme point.

C ¼ C�; C 2 Em;

where Em is the space of design variables at which the objective function reaches a
minimum value.

F� ¼ F C�ð Þ ¼ minF Cð Þ;

and constraints are met.

GjðC�Þ� 0; j ¼ 1; J:

Here, C is the vector of the space of design variables. The objective function is the
cover weight. The design variables were the thicknesses of the cover structural ele-
ments, namely shells, plates and ribs. Constraints are imposed on the minimum and
maximum values of thicknesses. This is most often the case because of manufacturing
and operational requirements. The minimum possible thickness for all elements is
0.016 m. The maximum thicknesses are the initial values of thicknesses of the not
modified cover. The maximum stress intensity values are limited by the admissible
value r½ � ¼ 107 MPa.

The problem of optimal design is solved with the gradient method using a finite-
difference analogue of a gradient for the objective function described previously [14].

Fig. 8. Distribution of stress intensity in the cover sector with the modified hole.
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5 Optimization Results

The numerical solution of the optimization problem yields the optimal thicknesses of
shells, plates and ribs of the cover. As a start design, the covers with initial and
modified holes were selected in turn.

Figure 9 and Fig. 10 show the distributions of axial displacements and stress
intensity in the optimal cover, respectively. Maximum stresses arise in the area of ribs
as indicated by the arrow (!).

Next, the cover with the modified hole was optimized. The distribution of axial
displacements and stress intensity in the optimal cover in the normal mode with the
modified hole is shown in Fig. 11 and Fig. 12, respectively.

Fig. 9. Distribution of axial displacements in the optimal cover.

Fig. 10. Distribution of stress intensity in the optimal cover.
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Table 1 presents the maximum values of stress intensity rmax, axial displacements
umax and the cover weight obtained by design of original and optimal structures. The
optimal design is characterized by the following range of structural thicknesses (shells,
plates and ribs) 0.018 m, 0.02 m, 0.022 m, 0.03 m, 0.032 m, and 0.04 m.

Fig. 11. Distribution of axial displacements in the optimal cover.

Fig. 12. Distribution of stress intensity in the optimal cover with the modified hole.

Table 1. Parameters of optimal design of the cover.

Cover structure Stress
intensity
rmax [MPa]

Displacement umax � 10�3

[m]
Weight
[kg]

Original cover 32.2 0.371 4080.7
Optimal cover with the hole 57.9 0.630 2578.5
Optimal cover with the modified
hole

90.6 0.649 2569.2
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During optimization, only constraints on the minimum thicknesses were applied.
Hence, the thicknesses of all elements of the optimal cover turned out to be the same
and equal to 0.16 m. The thickness of the flange of the cover attached to the stator
remained equal to 0.03 m.

Note that the optimal cover weight is 1510 kg less than that of the initial cover. In
addition, the nomenclature of optimal design elements was reduced by five positions,
which is a clear advantage.

The stresses in the optimal cover for all structures do not exceed admissible values.

6 Conclusions

The paper suggests an approach to minimum weight design of Kaplan covers subject to
geometrical and strength constraints. Optimal design parameters are the structural
thicknesses of covers. Constraints are imposed on the minimum and maximum values
of thicknesses of shells, plates and ribs in the cover. Constraints are also imposed on
maximum stress intensity values.

A special technique based on the finite element method was developed to analyze
the strain-stress state of covers under a static axisymmetric load. The optimization
problem is formulated in terms of nonlinear programming, and then solved using the
gradient method.

Several numerical examples are given that allow following the variation of the
optimal design depending on the type of covers. Covers with holes and without holes in
ribs were considered.

In all the cases, the weight of the optimal cover is one third less than that of the
original structures, and the stresses in the optimal covers do not exceed the admissible
values. In addition, the rolled stock thickness range is downsized by five positions.
That is crucial for manufacturing turbines.

In practice, the execution of an optimal design is limited by the thicknesses of
structural elements. However, optimal design makes it possible for a designer to see
how close it fits an optimal one. Therefore, optimal designs similar to those given here
may be useful when designing real turbines and aircraft structures.

Acknowledgment. The work was supported in part by the budget program of the NAS of
Ukraine KPKVK 6541230 “Supporting the development of priority areas of scientific research”.
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