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MODELE MATEMATYCZNE HYBRYDOWYCH CRYPTO-
CODÓW Z ZASTOSOWANIEM ALGORYTMU UMAC 

Streszczenie: W obecnych czasach, istotną kwestią jest uwierzytelnienie krytycznych danych 

w systemach informacyjno-komunikacyjnych oraz w systemach cyber-fizycznych. Z jednej 

strony, obecne możliwości obliczniowe pozwalają na zwiększenie volumenu/liczby 

transmitowanych danych, natomiast – z drugiej strony, jest praktycznie niemożliwe, aby 

zapewnić stabilność mechanizmów uwierzytelniania. Badania w tym zakresie pokazują, ż 

jednym z obiecujących kierunków jest używanie specjalnych krypto-kodów w oparciu o 

schematy McEliece lub Niederreiter, które opierają się na kodach algebraiczno-

geometrycznych oraz na algorytmach szybkiego uwierzytelniania. Autorzy proponują uzycie 

krypto-kodu McEliece w oparciu o zmodyfikowane kody eliptyczne wraz z uszkodzeniem w 

algorytmie caskadowym UMAC. Takie ujęcie problem umożliwia zachowanie wymaganego 

poziomu odporności (na błędy), efektywność generowania kodu MAC, a także universalności 

algorytmu UMAC, który umożliwia uwzględnienie własności kolizji jako dodatkowego 

identyfikatora w wielkich bazach danych. 
 
Keywords: algorytm UMAC, McEliece hybrydowy krypto-kod, zmodyfikowane kody 

eliptyczne, algorytm MV2, uszkodzenie/awaria 

MATHEMATICAL MODELS OF HYBRID CRYPTO-CODE 

CONSTRUCTIONS IN THE UMAC ALGORITHM 

Summary: In the post-quantum period, the issue of data authentication in critical information-

communication and cyber-physical systems becomes acute. On the one hand, computing 

resources provide the ability to increase the amount of transmitted data, on the other hand, it is 

practically impossible to ensure stability in authentication mechanisms. Research in this area 

demonstrates that one of the promising directions is the use of crypto-code constructions based 

on McEliece and Niederreiter schemes based on algebraic geometric codes, and fast 

authentication algorithms. The authors propose the use of McEliece crypto-code constructions 

based on modified elliptic codes with damage in the cascade UMAC algorithm. This approach 

provides the required levels of robustness, the efficiency of generating the MAC code, as well 

the universality property of the UMAC algorithm, which allows using collision properties as 

additional identifiers in large databases. 
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1. Introduction 

In the post-quantum period, with the advent of a full-scale quantum computer 

and the rapid growth of computing resources, the contradiction between further 

consideration of the range of services based on Internet technologies and the 

impossibility of ensuring security is increasing. Basic security services such as 

confidentiality, integrity and authenticity are formed on the basis of symmetric and 

asymmetric systems, the stability of which in the post-quantum period is called into 

question. So, in March 2018 and February 2019 reports were published by NIST 

(National Institute of Standards and Technology) (USA) specialists, which confirm 

the possibility of breaking symmetric and asymmetric cryptography algorithms 

(including cryptoalgorithms and elliptic curve cryptography) based on Shor`s and 

Grover`s quantum cryptographic analysis algorithms. 

In such conditions, an urgent problem is the search for new and modernization 

of known methods of providing security services. Among the known methods of 

ensuring authenticity, algorithms for generating MDC and MAC codes are 

distinguished. One of the promising algorithms for the formation of MAC-codes is 

the UMAC algorithm, which can provide the maximum speed of formation of hash 

codes and the property of universality. The property of universality guarantees an even 

distribution of hash codes between collisions and allows you to know this division in 

advance (the number of collisions). This property can be used as an additional 

identifier in large databases for fast information retrieval. 

Thus, the proposed modernization of the UMAC cascade algorithm based on 

McEliece crypto-code constructions is an urgent scientific and technical problem. 

For practical implementation, it is proposed to consider mathematical models for 

the formation of a hash code based on the UMAC algorithm, in which a code sequence 

of crypto-code constructions (CCC), hybrid crypto-code constructions of McEliece 

based on modified elliptic codes (MEC) (shortened and / or extended), and damage 

codes (DC). 

2. Mathematical model for the formation of a hash code based on the 
UMAC cascade algorithm 

2.1. Input data for the mathematical model of the hash code formation 
 

The following input data are used to construct mathematical models for the formation 

of the hash code of the transmitted message and the pseudo-random substrate: 

М – transmitted plain text; 

I – plaintext information symbols (k-bit information vector over GF(q)) ; 

K  – the secret key; 

Taglen  – an integer from the set of valid values { }4, 8,12,16 , specifying the 

length of the message authenticity code Tag  in bytes; 
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( ), ,Hash K M Taglen  – key universal hashing function of an information 

message M using a secret key K ; 

1L IY  – generic hash-function value (UHASH-hash) of the first level hashing; 

3L IY  – hash-function value (Carter-Wegman-hash) of the third level hashing; 

Т – data block; 

Blocklen – data block length (bytes); 

Keylen – secret key length (32 bytes); 

Tag – integrity and authenticity control code; 

1L IK  – secret key of the first level of hashing, consisting of subkeys K1, K2, 

…, Kn; 

3L IK  – secret key of the second level of hashing, consisting of keys KL31 

(subkeys K1, K2, …, Kn) and KL32 (subkeys K1, K2, …, Kn); 

Numbyte – pseudo-random key sequence length (number of subkeys); 

'K  – pseudo-random key sequence; 

Index – subkey number; 

[64,128]Wordbits ∈ ;  

Maxwordrange  –  positive integer less then 2
Wordbits ;  

k  – key 
2L

K  dependent an integer from a range [0,..., ( ) 1]prime Wordbits −
, ( )prime x  –  the largest prime number less than 2

x ;  

( )1 1 1,P L L LM Y Hash K M= =  – data subject to polynomial hashing.  

2.2. Mathematical model of the hash code formation 

The UMAC algorithm consists of three levels (three hashing algorithms). 

 

The first level of the hash code is generated by a specialized universal hashing 

function U-hash, which does the splitting of the array-string M  dimension up to 64
2  

bytes for blocks iM  with 1024 byte with subsequent transformation of each block by 

the function ( )1,L iNH K M :  

( ) ( ) ( ) ( )1 1 1 1 0 1 1 1 1, , , ... ,L L L L L L nY Hash K M NH K M NH K M NH K M −= =
, 

where 
( )

1024

Length M
n

 =   
, [ ]x  – the integer part of number x , ( )Length M  –  byte 

length of information message of M length, 1LK  represented as sequences of four-

byte subblocks: 

1 21 1 1 1...
tL L L LK K K K=

. 

Then (taking the initial state 1 0
iLHash = ) for all 1,9,17..., 7j t= −  the following 

operations are performed: 
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0 0 4 41 1 64 32 1 64 32 1(( ) ( ))
i i j j j jL L i L i LHash Hash M K M K

+ + + +
= + + × +

, 

1 1 5 51 1 64 32 1 64 32 1(( ) ( ))
i i j j j jL L i L i LHash Hash M K M K

+ + + +
= + + × +

, 

2 2 6 61 1 64 32 1 64 32 1(( ) ( ))
i i j j j jL L i L i LHash Hash M K M K

+ + + +
= + + × +

,

3 3 7 71 1 64 32 1 64 32 1(( ) ( ))
i i j j j jL L i L i LHash Hash M K M K

+ + + +
= + + × +

, 

where 64+ , 32+  – modulo addition operations 264 and 232, respectively; 64×  –  modulo 

operation 264. 

As a result of calculations, an eight-byte value is formed 1iLHash  

 

The second level of the hash code uses polynomial key transform Poly  based 

on the Carter-Werman polynomial hashing scheme. The result of the work of this level 

is to obtain a hash code: 

( )2 2 2 1, ( , , , )L L L L PY Hash K Y Poly Wordbits Maxwordrange k M= = . 

According to the UMAC algorithm specification as ( )prime x  the following 

constants are used: 36(36) 2 5prime = − , 64(64) 2 59prime = − , 

128(128) 2 159prime = − . Bit length PM  denoted as ( )PBytelength M . Depending on 

the length PM  the following features are used in the implementation of the second 

level of hashing: 

− if the length of the received data PM  does not exceed 217 byte then 

polynomial hashing Poly  executed with parameters 64Wordbits = ; 

64 322 2Maxwordrange = − ; 64k k=  – the string formed by the first eight bytes of 

the key 2LK  and a special eight-byte mask; 

− if the length of the received data PM  exceeds 217 bytes (but does not exceed 

264 bytes), then first 217 data bytes are processed by the polynomial hashing function 
64 32(64, 2 2 , 64, )PPoly k M− , and the remaining data bytes are processed by the 

function Poly  with parameters 128Wordbits = ; 128 962 2Maxwordrange = − ; 

128k k=  –  the string formed by the last 16 bytes of the key 2LK  and a special 16 

byte mask. 

Hashed data PM  split into blocks by / 8Wordbytes Wordbits=  bytes: 

1 2
...

nP P P PM M M M=
, 

where ( ) /Pn Bytelength M Wordbytes= . 

The result of hashing is the value of the polynomial function 

( )
1 1

1

2 ... mod( )
n n

n n

L P P PY M kM k M k p
−

−= + + + +
, 

which is calculated by the iterative procedure (for all 1, 2,...,i n= ):  
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( )1 mod( )
ii i PPoly kPoly M p−= + , 0 1Poly = , ( )p prime Wordbits=  

using Horner's scheme: 

1 1 1 2 1

1
... ((( ) ) ... )

n n n n

n n

P P P P P P PM kM k M k k M k M k M k M
− −

−+ + + + = + + + + +
. 

Computed hash value 2L nY Poly=  is an integer from the range 

[0,..., ( ) 1]prime Wordbits − . 

 

The third level of the hash code ( )
1 23 3 3 2, ,L L L LHash K K Y  is performed on the 

result of polynomial hashing and converts data of length up to 16 bytes supplied to its 

input into a hash code Y  of fixed length 32 bits. This level is comparable to a 

symmetric stream cipher, where the hash code is eventually added to a pseudo-random 

substrate, which ensures the strength of the MAC code. 

The initial data of the third level of hashing are two key sequences 
13LK  and 

23LK  lengths of 64 and 4 bytes, respectively, as well as an input 16 byte sequence 2LY  

Hashed data 2LY  and the key sequence 
13LK  evenly split into eight blocks, each 

of which is represented as an integer 2iLY  and 
13 iLK , 1, 2,...,8i = .  

Hash value 3LY  calculated as follows: 

1 2

32

3 2 3 3

1

mod( (36)) mod(2 ) ( )
i i

m

L L L L

i

Y Y K prime xor K
=

   =        
 , 

However, in [1] it is shown that when the symmetric AES algorithm is used to form 

the substrate, the universality property is “removed”. Therefore, the authors propose 

an improvement of the algorithm by using McEliece on MEC and DC to construct the 

substrate CCC (GCCC). This approach not only preserves the property of universality, 

but also ensures the stability of the MAC code in the post-quantum period. Let us 

consider a mathematical model of the formation of a base on the basis of McEliece 

GCCC using MES. This approach allows you to reduce energy costs for 

implementation and provide an additional level of security, due to the initialization 

vectors, which define the symbols of the reduction and / or lengthening of the 

codeword. The use of defective cryptography reduces capacitive costs by 12-15 times 

(Galois field 24, instead of 210–213, as required for the complete McEliece scheme). 

3. Mathematical model of the formation of a pseudo-random substrate 
Pad based on the McEliece GCCC  

3.1. Input data for the mathematical model for the formation of a pseudo-
random substrate Pad 

The mathematical model of McEliece GCCC on modified elliptic codes (MEC) 

based on shortening (reduction of information symbols) or lengthening (adding 

information symbols) with damage is formally set by a set of input elements [2–4], 

given below. 
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Plain text М, consisting of information symbols I, at that ( )jI∀ ∈GF q : 

– when shortening characters: 

1 ji 0 h h k -1M {I ,I ,.. I ,I },=  

where hj – information symbols equal to 

zero 

– when lengthening characters: 

r r1 j
i 0 h h k -1M {I ,I ,.. I , I }= , 

where hr – extension information symbols 

k 

|h|=
1

2
k , т. е. Ii=0, ∀Ii ∈h, 

A plurality of closed texts (codograms): 

k1 2 q
C {C ,C ,...,C },= где 

*
( )

jXс GF q∀ ∈  

– when shortening characters: 

0 1 1

* * * *
( , ,..., , )

j ni X h h XC с с с с
−

=  

– when lengthening characters: 

0 1 1

* * * *
( , , ..., , )

r r nj
i X h h XC с с с с

−
=  

A plurality of direct mappings (based on the use of public key - generating matrix): 

1 2 s{ , ,..., }=φ φ φ φ  

– when shortening characters: 

:
ji k hM C −→φ , 1, 2,...,i s=  

– when lengthening characters: 

:
ri hφ M C→ , 1, 2,...,i s= , 

A plurality of reverse mappings (based on the use of a private (private) key - masking 

matrices): 
1 1 1 1

1 2 s{ , ,..., }− − − −=φ φ φ φ  

– when shortening characters 

where 
1

:
ji k hC M

−
− →φ , 1, 2,...,i s=  

– when lengthening characters 

where 
1

:
ri hφ C M

− → , 1, 2,...,i s=  

A plurality of keys, parametrizing direct mapping (the public key of the authorized 

user): 
1 2

1 2 ,
i a i i ia i ai i

EC EC ECs

a s X a X a X aK {K ,K ,...,K } {G ,G ,...,G }= =  

where 
ia

ECiG
X

 – generating n k×  matrix of an algebrogeometric block disguised as 

a random ( , , )n k d - code with elements from ( ),GF q
 

ai – the set of coefficients of a curve polynomial a1…a6, ∀ai∈GF(q), specifying 

a specific set of points on a curve from space Р2 

– when shortening characters: 

: ;iai

j

K

i k hM C −φ →  1, 2,...,i s=   

– when lengthening characters: 

: iai

r

K

i hφ M C→ ; 1, 2,...,i s=   

 

A plurality of keys that parameterize the inverse mappings (private (private) key of 

the authorized user): 
* * * *

1 2 1 2{ , ,..., } {{ , , } ,{ , , } ,...,{ , , } },s sK K K K X P D X P D X P D= =  

{ , , } { , , },
i i i

iX P D X P D=  

where iX  – masking non-degenerate randomly equiprobably generated by the key 

source k k×  matrix with elements from ( );GF q   
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iP  – permutation randomly equally likely generated by the key source n n×  

matrix with elements from ( );GF q   

iD  – diagonal generated by key source n n×  matrix with elements from ( )GF q

, i.e. 
*
iK1 : ,i C M−φ → 1, 2,...,i s= . 

 

A plurality of defective texts СFТ: 

1 2{ , ,..., }kq
СFT CFT CFT CFT=

 

A plurality of damage CHD: 

1 2{ , ,..., }kq
СHD CHD CHD CHD=

 

A plurality of direct damage (through the use of key – Ki
МV2, and algorithm MV2): 

2 2 2

1 2
{ , ,..., },

MV MV MV

S

K K KE E E φ=
1,2,..., ;i s=  

( )
i

f x – flag (damage, CHD), ( )
i

C x  – remainder (defective text, СFТ);  

f(x)=n –|C(x)|, if |C(x)|>y, where y – some parameter, , 0mY q
y Z y n∈    

 

A plurality of mappings MV2 
r

nF : 

– is given by a bijective mapping between the set of permutations 1 2 2
{ , ,..., }nS S S  and 

plurality ( ){ }# , # # , 2 !r r n

n nF F c f= = ; 

 

A plurality of meaningful text (based on the use of the keyа – Ki
МV2, и алгоритма 

MV2): 

2 2 2

1 1 1 2 1 1
{ , ,..., },

MV MV MV

S

K K KE E E E
− − − −=

 

where ( ) ( )
2

1 :  + ,
MVK i i

E f x C x М
− → 1,2,..., ;i s=  

( )
i

f x – flag (damage, CHD), ( )
i

C x  – remainder (defective text, СFТ);  

f(x)=n –|C(x)|, if |C(x)|> y, where y – some parameter, mY q
y Z∈  

 

A plurality of key conversion codes flawed: 

2 2

i

MV MVK K∈
 

Algebrogeometric block (n, k, d)-code 
jk hC − (shortened) / 

rhC  (lengthened) above 

GF(q), i.e. a set of code words 
ji k hС C −∈ ( when shortening) / 

ri hС C∈ ( when 

lengthening), that the condition is satisfied 0,T

iС H =  where Н – parity check matrix 

of an algebraic geometric block code; 
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ai – set defines a specific set of curve points from space Р2 to form the generating 

matrix; 

 

hj – information symbols equal to zero, |h|=1/2k, т.е. Ii = 0, ∀ Ii ∈ h; 

 

hr – Information lengthening symbols k, |h|=1/2k, т.е. Ii = 0, ∀ Ii ∈ h; 

 

Masking matrix mappings, given by a set of matrices { , , }
i

X P D , where Х – 

non-degenerate k k×  matrix over GF(q); Р – permutation n n×  matrix over GF(q) 

with one nonzero element in each row and in each column of the matrix; D – diagonal 

n n×  matrix over GF(q) with nonzero elements on the main diagonal; 

y – some parameter { }, 0,1,...2 1m m

n

Y q q
y Z Z∈ = − ;  

n – some parameter { }, 1,...2n n

n

Y q q
n Z Z∈ = ; 

a plurality of mappings MV2 
r

nF .  

3.2. Mathematical model of the formation of a pseudo-random substrate Pad 

3.2.1. Formation of Pad as CCC on МЕС 

Let us consider the formation of a pseudo-random substrate Pad as a McEliece 

CCC with the possibility of modifications (shortening or lengthening).  

This modified (shortened / extended) algebraic geometric (n, k, d)-code 
jk hC −  

(shortening) / 
rhC (lengthening) with a fast decoding algorithm disguises itself as a 

random (n, k, d)-code 
jk hC − * (shortening) / 

rhC * (lengthening) by multiplying the 

generating matrix GЕС-code 
jk hC −  (shortening) / 

rhC ( lengthening) on the masking 

matrix, which are kept in secret u
X , u

P and u
D  [2–4], which ensures the formation 

of the public key of the authorized user: 

,ECu u EC u u

XG X G P D= ⋅ ⋅ ⋅
 

{1,2,..., },u s∈
 

where 
EC

G  – generating n k×  matrix of algebrogeometric block ( , , )n k d -code with 

elements from ( ),GF q  built using user-selected coefficients of the curve polynomial a1…a6, 

∀ai∈GF(q), which uniquely define a specific set of points of a curve from space Р2. 

Formation of closed text 
jj k hC C −∈ (shortening) / 

rj hС C∈ (lengthening) by the 

entered plain text M  and the given public key ,
i

ECu

X aG  {1,2,..., }u s∈  is carried out 

by forming a codeword of a masked code with the addition of a randomly generated 

vector 0 1 1
( , ,..., ) :

n
e e e e −= ( ) ( ), ,

T
u u

j u i X i XC M G M G eφ= = × +  moreover, the 

Hamming weight (the number of nonzero elements) of the vector e  does not exceed 

the correcting ability of the used algebraic block code: 

( ) 1
0 ,

2

d
w e t

− ≤ ≤ =   
x    – integer part of a real number .x  
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For each closed text that is generated 
jj k hC C −∈ (shortening) / 

rj hС C∈

(lengthening), corresponding vector 0 1 1
( , ,..., )

n
e e e e −=  is a one-time session key, that 

is, for a specific jE  vector e  generated randomly, equally probable and 

independently of other closed texts.  

To algorithm MV2 fed (shortening / lengthening): 

( ) ( )
( ) ( )

2

2

* *

* *

, :  + 

, :  + 

j MV

r MV

j j k h K j i i

j h K j i i

C C C E C f x C x

C C E C f x C x

−= − →

= →
. 

To the communication channel ( ) ( ) и 
i i

f x C x  wherein the transmission can 

be carried out on one or on two independent channels. 

3.2.2. Formation of Pad in the form of the GKKK on the MEC with damage 

Taking into account the modifications obtained during the formation of the codogram 

in clause 3.2.1, damage is carried out according to the following scheme: 

 

1. Let's form a subset of points h(GF(q)): (Рx1, Рx2, …, Рxx), h ⊆ EC(GF(q)), |h|=x and 

keep it secret. 

The initial data for this is the final field GF(q), elliptical curve 

y2z+a1xyz+a3yz2=x3+a2x2z+a4xz+a6z3, as well as a set of its points EC(GF(q)): 

(Р1, Р2, …, РN) over GF(q).  

 

2. Let's form the initialization vector: 

when shortening characters 

1 – jIV EC h=   

when lengthening characters 

1 , 2, – rIV IV EC h=   

 

3. Let's form on the entered information vector I the codeword с. Если (n, k, d)-code over 

GF(q) is given by its generating matrix, then с=I⋅G.  

 

4. Let's generate a random error vector e such that w(e)≤t, ( 1) / 2 .t d= −    Add the 

generated vector to the codeword, we get the codeword: с*=с+e. 

 

5. Let's form a codogram by:  

- when shortening characters: 

adding (lengthening) initialization 

vector characters: сХ*=с*+IV1; 

- when lengthening characters: 

remove (shorten) the initialization 

vector characters: сХ*=с*–IV2. 

 

6. We will form a damaged text (remainder) and a flag (damage):  

( ) ( )
( ) ( )

2

2

* *

* *

, :  + 

, :  + 

j MV

r MV

j j k h K j i i

j h K j i i

C C C E C f x C x

C C E C f x C x

−= − →

= →
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Thus, it is proposed to use a sequence of defective text as a background, which ensures 

the preservation of the universality property, the required level of reliability and, 

unlike the proposals for modifying the UMAC algorithm in [5], provide the required 

level of efficiency. 

4. Conclusions 

Generation of authentication codes for transmitted messages, which are hash 

codes generated by the UMAC algorithm and a pseudo-random backing Pad, formed 

on the basis of the McEliece GCCC on the MEC with damage, in the form of 

mathematical models, provides the required level of MAC code stability, the 

efficiency of its formation and retains the property of universality.  
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