
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY

OF ECONOMICS

PROBABILITY THEORY

AND MATHEMATICAL STATISTICS

Guidelines

to laboratory work

based on the R software

for Bachelor's (first) degree

students of all specialities

Kharkiv

S. Kuznets KhNUE

2018

2

UDC 519.2(07.034)

P93

Compiled by: L. Malyarets

 O. Tyzhnenko

Затверджено на засіданні кафедри вищої математики і економіко-

математичних методів.

Протокол № 13 від 07.03.2018 р.

Самостійне електронне текстове мережеве видання

 Р93

Probability Theory and Mathematical Statistics : guidelines to

laboratory work based on the R software for Bachelor's (first) degree

students of all specialities [Electronic resource] / compiled by

L. Malyarets, O. Tyzhnenko. – Kharkiv : S. Kuznets KhNUE, 2018. –

114 p. (English)

The methodology for studying the probability and statistics problems with

the help of R programming by solving textbook problems has been studied. Some

basic principles of using R for solving probability and statistics problems have been

introduced based on real examples. This approach will help students having basic

knowledge of the calculus and mathematical methods in economics to quickly start

using R for mathematical calculations. So, the guidelines can be used as a background

for students of economics studying probability and statistics courses with the use

of the computer program R.

For Bachelor's (first) degree students of all specialities.

UDC 519.2(07.034)

© Simon Kuznets Kharkiv National

 University of Economics, 2018

3

Contents

Introduction .. 5

1. Obtaining and installing R .. 6

2. R language essentials (quick introduction to R) ... 6

2.1. Starting the R session and session management 6

2.2. Getting help with functions and features .. 8

2.3. Entering data into R ... 8

2.3.1. Using c() .. 9

2.3.2. Using scan ... 9

2.3.3. Using scan() with a file... 10

2.3.4. Editing the data frame ... 10

2.3.5. Reading data in tables ... 10

2.4. Functions and arguments .. 11

2.5. Missing values ... 11

2.6. Functions that create vectors ... 11

2.7. Matrices and arrays ... 12

2.8. Data frames ... 13

2.9. Graphics .. 14

3. Probability distributions .. 17

3.1. The built-in distributions in R .. 17

3.2. Descriptive statistics and graphics ... 21

3.2.1. Summary statistics for a single group 21

3.2.2. The graphical display of distributions 22

4. One- and two-sample tests .. 25

4.1. Comparing the variance of two samples .. 25

4.2. Comparing the means of two samples when

the variances are equal .. 27

4.3. Comparing the means of two samples when

the variances are unequal .. 33

4.4. A one-sample t-test.. 36

4.5. Comparing the variance of a sample with a known value 39

5. Regression analysis ... 41

5.1. Simple linear regression .. 41

5.2. Residuals and fitted values .. 43

5.3. The confidence and prediction interval .. 44

5.4. Correlation ... 45

4

5.5. Testing the hypotheses about the model parameters 46

5.6. The criteria for selection of variables ... 47

5.7. Diagnostics .. 48

5.7.1. Studentized deleted residuals .. 49

5.7.2. Hat matrix leverage ... 49

5.7.3. The influence on single fitted values – DFFITS 49

5.7.4. The influence on all fitted values – Cook's distance 50

5.7.5. The influence on the regression coefficients – DFBETAS 50

5.8. Examples ... 50

6. Power analysis... 68

7. Qualitative data .. 72

8. The null hypothesis and the error types ... 75

9. The chi-squared test .. 76

10. Quantitative data .. 78

10.1. Descriptive statistics .. 78

10.2. The mean .. 78

10.3. The variance .. 79

10.4. The standard deviation (S.D.) .. 80

10.5. Standard deviation vs standard error ... 81

10.6. Which error measure to choose? ... 81

10.7. The confidence interval .. 82

11. The power analysis with a t-test ... 86

11.1. Histograms in R ... 92

12. The comparison of more than two means: analysis of variance 95

12.1. The correlation coefficient .. 104

12.2. Outliers and influential cases ... 108

Conclusions ... 112

Bibliography ... 113

5

Introduction

The objective of this methodical edition is to test the statistical software R

for possible educational use at S. Kuznets Kharkiv National University of

Economics for solving statistical textbook problems. This work introduces

some basic features of R for statistics with some real examples. They will help

students of economics having basic knowledge of mathematics start using R

in probability and statistics courses. It can be also used as a tutorial for

engineering students when studying statistics courses with computer program

in R.

R is a popular language and environment that allows powerful and fast

manipulation of data, offering many statistical and graphical options. Graphical

representation of data is pivotal when one wants to present scientific results,

in particular in publications. R allows you to build top quality graphs (much

better than Excel for example).

These guidelines, however, focus on the statistical possibilities of R.

Whatever package you use, you need some basic statistical knowledge if only

you want to design your experiments correctly.

This work is mainly divided into three parts. Part 1 will tell you where to

get the software and how to install it on your PC. The purpose of Part 2 is to

give some familiarity with the R sessions and R language essentials. Part 3 is

devoted to the probability distributions with R. In the rest part of this work,

some statistical textbook problems are solved with the R statistical software.

With the help of these examples, you will further familiarize yourself with the

application of R to solving the real statistics problems.

These guidelines were written to follow the version 3.2.5(2016-04-14)

that is one of the latest versions of R.

6

1. Obtaining and installing R

One way to download R is from the main website for R: http://cran.r-

project.org/. There are lots of mirror sites worldwide. You can choose a closer

site to get the faster download time. There are three pre-complied versions for

Linux, Mac Os and Windows and you can select a proper version for variants

of platforms. The most convenient way to use R is at a graphics workstation

running a windowing system.

The binaries distribution installation is usually quite straightforward and

is similar to other software. The binaries distribution can be obtained in two

versions:

1. A 23Mb file rw2001.exe. Just run this for a Windows-XP style installer.

It contains all the R components, and you can select what you want to install.

2. Files miniR.exe and miniR-1.bin to miniR-7.bin. This is a small instal-

lation, containing text help and the introduction to R and Data Import/Export

manuals in PDF.

For more details, including command-line options for the installers and

how to uninstall, see the rw-FAQ from CRAN.

For Microsoft Windows platform, select the set up file rw2001.exe and

double-click with the mouse and then follow the on-screen instructions. When

the process is complete, you will have an entry under Programs on the start

menu for invoking R, as well as a desktop icon.

The README.rw2001 offers the detailed instructions on installation for

your machine.

2. R language essentials (quick introduction to R)

2.1. Starting the R session and session management

Starting R is straightforward, but the method will depend on your computing

platform. You can launch R from a system menu by a double-click on the icon,

or by input of the command "R" in the system command line. Once R is started,

you will see the information as: R : Copyright 2004, The R Foundation for

Statistical Computing, Version 2.0.1 (2004-11-15), ISBN 3-900051-07-0.

R is free software and comes with absolutely no warranty. You are welcome

to redistribute it under certain conditions. Type license() for distribution details.

http://cran.r-project.org/
http://cran.r-project.org/

7

R is a collaborative project with many contributors. Type contributors() for

more information and citation() on how to cite R or R packages in publications.

Type demo() for some demos, help() for on-line help, or help.start() for

a HTML browser interface to help.

Type q() to quit R.

The R program prints a prompt ">" when it is ready for input. R works

fundamentally by the question-and-answer model: you can enter the command

then press the enter button, the program will do something, then print the

result if relevant. If a command is not complete at the end of a line, R will give

a different prompt with "+" to expect to read the input until the command is

syntactically complete.

R is an expression language with a very simple syntax. It is case sensitive,

so the letter "A" and "a" is different symbols and refers to different variables.

Normally all alphanumeric symbols are allowed.

Comments can be put almost anywhere, following with a hash mark "#".

Any comment character after the "#" is ignored by R. Normally parentheses "()"

are for functions, and square brackets "[]" are for vector arrays and lists.

All variables created in R, are stored in a common workspace. The function

ls (list) is used to display the contents of the workspace. You can also use the

function rm (remove) to delete some of the objects from your workspace. To clear

the entire workspace you can use the command:

> rm(list = ls()).

When you exit, you will be asked whether to save the workspace image.

It is also possible to save the workspace to a file with any name using the

command:

> save.image().

It will be saved to a file with .Rdata extension in your working directory.

The files with .Rdata extension will be loaded by default when R is started in

its directory. Other saved files can be loaded into your workspace using the

function load().

8

2.2. Getting help with functions and features

R has an inbuilt help facility. From the command line, you can always use

the following commands to get the information on any specific named function.

To get help on the solve() function:

> help(solve)

or

> ?solve.

Another command we usually use to get help is apropos(). This command

is convenient when you think you know the function's name but you are not

sure. We can use this command to get a list of function names that contain

a given pattern.

> apropos("solve")

[1] "backsolve" "forwardsolve" "qr.solve" "solve"

[5] "solve.default" "solve.qr".

On most R installations the help is available in HTML format by running

> help.start()

which will launch a Web browser that allows the help pages to be browsed with

hyperlinks. The "Search Engine and Keywords" link in the page loaded by

help.start() is particularly useful as it contains a high-level concept list which

searches though available functions. It can be a great way to get your bearings

quickly and to understand the breadth of what R has to offer.

2.3. Entering data into R

An R installation contains a library of packages. Some of these packages

are part of the basic installation, others can be downloaded from the website:

http://cran.r-project.org/. To load the package into R we should use the command

library(). The loaded packages will be dropped if you terminate your R session.

So you have to load it again when you start a new session with the saved

workspace.

http://cran.r-project.org/

9

R has a number of built-in data sets. Sometimes we need to read in a built-

in dataset. But at the first we need to load the package, and then ask to load

the data. Here are the commands used for reading in a built-in dataset:

 use the command library() to list all available packages;

 use the command data() without any arguments to list all available

datasets;

 use data(package = "package name") to list all data sets in a given

package;

 use data("dataset name") to read in a dataset.

It is very convenient to use built-in data sets, sometimes we want to enter

data into the session from outside of R. There are several ways to read data

from outside.

2.3.1. Using c()

The most useful R command for quickly entering in small data sets is the

c-function. It is short for "concatenate". This function combines, or concatenates

terms together, for example, stores the values 1, 2, 3, 4 into x.

 > x = c(1,2,3,4)

 > x

 [1] 1 2 3 4.

The values are assigned to the variable x by the assignment operator

"=". The value of x doesn't automatically print out. We can input the variable

name to indicate the values. The values are prefaced with "[1]". This indicates

that the value is a vector.

2.3.2. Using scan

The function scan() can do the same thing as c():

 > x = scan()

 1 2 3

 4.

Notice, when we start typing the numbers in, if we hit the return key

once, we continue on a new row, if we hit it twice, scan() stops.

10

2.3.3. Using scan() with a file

If we have our numbers stored in a text file, then the function scan() can

be used to read them in. We need to pass the file name to the function scan():

> x = scan(file = "ReadWithScan.txt")

This command will read the contents of the file ReadWithScan.txt into

the R session.

2.3.4. Editing the data frame

The data.entry() command is used to edit the existing variables and data

frames with a spreadsheet-like interface. A simple usage is:

 > data.entry(x) # x already defined;

 > data.entry(x = c(NA)) # if x not defined yet.

When the window is closed, the values are saved. The R command edit

will also open a simple window to edit data. This makes the edit functions easier,

but the results of the edit will not be stored when you close the window.

2.3.5. Reading data in tables

If you want to enter multivariate sets of data, you can do any of the above

for each variable. However, it may be more convenient to read in tables of

data at once. The command read.table() will read the data in and store the results

in a data frame. A data frame is a special matrix where all the variables are

stored as columns and each has the same length. (Notice we need to specify

that the headers be there in this case.)

> y = read.table("person.txt",header = TRUE)

 > y

 Age Weight Height Gender

 1 18 150 65 F

 2 21 160 68 M

 3 45 180 65 M

 4 54 205 69 M

11

2.4. Functions and arguments

In the R environment many things are done through the function calls.

R function calls are the commands that contain one or several variables, for

example:

> plot (height, weight)

The function name is plot and the arguments are height and weight. These

are the actual arguments that only apply to the current call. The functions

have a large selection of arguments in order to be able to modify symbols, for

example, the plot function has line width, titles, axis type, and so on.

There are two kinds of argument specification used in R functions:

positional matching and keyword matching, that is the arguments can be

specified in arbitrary order with the specified keyword of the function (generally,

the functions have a large selection of arguments). For example, we can write:

> plot (y = weight, x = height, pch = 2)

This is the same plot as

> plot (x = height, y = weight, pch = 2)

The keyword pch was used to say that the argument is a specification

of the plotting character.

2.5. Missing values

In real data analysis, a data point is frequently unavailable. R allows vectors

to contain a special NA value. This value is carried through in computations

so that operations on NA yield NA as the result.

2.6. Functions that create vectors

There are several functions used to create vectors in R: c, seq, rep, and gl.

The c() has already been introduced. The second function, seq (sequence),

is used for equidistant series of numbers. It is always needed for graphics

and ANOVA. Like,

12

 > seq (4, 10, 2)

 [1] 4 6 8 10,

which prints integers from 4 to 10 with increment of 2.

The function rep(), replicate, is used to generate repeated values. It is used

in two variants, depending on whether the second argument is a vector or

a single number. For example:

 > rep (c(4,5,6),3)

 [1] 4 5 6 4 5 6 4 5 6,

 > rep (c(4,5,6),1:3)

 [1] 4 5 5 6 6 6.

The first of the above function calls repeats the vector (4, 5, 6) three

times. The second one repeats each value of the vector (4, 5, 6) with relevant

times, which is indicated by the second argument 1:3 (means 1, 2, 3).

The function gl(generate factor levels) is used to generate factors by

specifying the pattern of their levels. For example:

> gl(3,3,9,labels = c("15°F", "70°F", "125°F"))

[1] 15°F 15°F 15°F 70°F 70°F 70°F 125°F 125°F 125°F

Levels: 15°F 70°F 125°F.

This command generates factors for a temperature variable. The result

gives three factor levels (first argument "3"), three times of replications (second

argument "3"), total length of the factors (third argument "9"), and the labels

of the factor levels (the last one is optional).

2.7. Matrices and arrays

An array can be considered as a multiply subscribed collection of data

entries. A dimension vector is a vector of non-negative integers. A matrix is just

а two-dimensional array of numbers. The dimensions are indexed from one up

to the values given in the dimension vector. A vector can be used as an array

if it has a dimension vector as its dim attribute. For example,

13

 > x = 1:12

 > dim(x) = c(3,4)

 > x

 [,1] [,2] [,3] [,4]

 [1,] 1 4 7 10

 [2,] 2 5 8 11

 [3,] 3 6 9 12

This assignment gives the vector (1:12) the dim attribute that asks it to be

treated as a 3-row by 4-column matrix.

There is a convenient way to create matrices in R using the function

matrix().

 > matrix(1:12, nrow = 3, byrow = T)

 [,1] [,2] [,3] [,4]

 [1,] 1 2 3 4

 [2,] 5 6 7 8

 [3,] 9 10 11 12.

The argument nrows indicates the number of rows of the vector, the

argument byrow causes the matrix to be filled in a rowwise or columnwise

fashion.

2.8. Data frames

A data frame is a list of variables of the same length with unique row

names, given class data.frame. A data frame can be displayed in matrix form,

and its rows and columns extracted using matrix indexing conventions.

The function data.frame() converts each of its arguments to a data frame.

Objects passed to data.frame should have the same number of rows.

 > d = data.frame(Temperature, Pressure)

 > d

 Temperature Pressure

 1 100 25

 2 125 25

 3 150 25

 4 100 30

14

 5 125 30

 6 150 30

 7 100 35

 8 125 35

 9 150 35

 10 100 40

 11 125 40

 12 150 40

 13 100 45

 14 125 45

 15 150 45

The above function creates a data frame list of 2 components using Temperature

and Pressure variables.

The simplest way to construct a data frame is to use the read.table()

function to read an entire data frame from an external file. This has been

discussed in Section 2.3.

2.9. Graphics

One of the most important aspects of presentation and analysis of data

is the generation of proper graphics. R has a simple model for constructing

plots. The command is

> plot (x, y,…).

A single argument x can be provided to the plot function alternatively.

But when argument y is missing, x-coordinate should be defined as a

reasonable way to the plot() function.

You might want to modify the drawing in various ways. There are a lot of

plotting parameters that you can set. Basically, a standard x-y plot has x and y

title labels generated from the expressions being plotted. You may, however,

override these labels and also add two further titles, a main title above the plot

and a subtitle at the very bottom, in the plot call. You can also change the

plotting symbol, plotting color, plotting type, and plotting range by passing

corresponding parameters to the plot function. Let us see a plotting example.

15

Define the x coordinate:

> x = 1:10

Define the y coordinate:

> y = function(x) (1/10)*exp(-x/10).

Call the plot function to construct a scatter plot (Fig. 2.1):

Fig. 2.1. A scatter plot with pch = 2 and col = "blue".

There are a lot of arguments that can be set to the plot(). See the

following commands:

> plot(x,y(x), pch = 2, col = "blue", xlim = c(1,12), ylim = c(0,0.1), main = "plot

x-y", xlab = "X-coordinate", ylab = "Y-coordinate")

> plot(x,y(x), pch = 2, col = "blue", xlim = c(1,12), ylim = c(0.03,0.1), main =

"plot x-y", xlab = "X-coordinate", ylab = "Y-coordinate").

The x and y arguments provide the x- and y-coordinates for the plot.

The pch(plotting character) sets the symbols for the plot. The col (color) sets

the colors for lines or points. The xlim (x limits) and ylim (y limits) set the x

2 4 6 8 10 12

0
.0

3
0

.0
4

0
.0

5
0

.0
6

0
.0

7
0

.0
8

0
.0

9
0

.1
0

plot x-y

X-coordinate

Y
-c

o
o

rd
in

a
te

16

and y limits of the plot. The main (main title), xlab (x label), and ylab (y label)

set the main title, the label of x-coordinate and y-coordinate.

The function lines() is used for adding connected line segments to a plot.

See the command

> lines(x,y(x)-0.01, lty = 2, col = "green"),

which add a dashed line to the existing plot diagram. The argument lty

(line type) and lwd (line width) set the type and width of the plotting lines.

The function abline() can be used to add one or more straight lines to a plot.

The argument h and v forms draw horizontal and vertical lines at the specified

coordinates.

> abline(v = 4, h = 0.05).

This command is for adding the horizontal and vertical lines as shown in

Fig. 2. 2. The function points() is used to add points to a plot.

Fig. 2.2. Adding the reference curve and straight lines,

using lines() and abline()

2 4 6 8 10 12

0
.0

3
0

.0
4

0
.0

5
0

.0
6

0
.0

7
0

.0
8

0
.0

9
0

.1
0

plot x-y

X-coordinate

Y
-c

o
o

rd
in

a
te

17

It is difficult to describe the graphic parameters completely at this point.

You can see the further graphical parameters in the par() (parameters). This

function is used to set or query graphical parameters. We will return to them

as they are used for specific plots.

3. Probability distributions

3.1. The built-in distributions in R

The concepts of randomness and probability are central to statistics.

R provides a comprehensive set of statistical distributions:

 Distribution R name additional arguments

 beta beta shape1, shape2, ncp

 binomial binom size, prob

 Cauchy cauchy location, scale

 chi-squared chisq df, ncp

 exponential exp rate

 F f df1, df1, ncp

 gamma gamma shape, scale

 geometric geom prob

 hypergeometric hyper m, n, k

 log-normal lnorm meanlog, sdlog

 logistic logis location, scale

 negative binomial nbinom size, prob

 normal norm mean, sd

 Poisson pois lambda

 Student's t t df, ncp

 uniform unif min, max

 Weibull weibull shape, scale

 Wilcoxon wilcox m, n.

Four fundamental items can be calculated for a statistical distribution:

 density or point probability;

 cumulated probability, distribution function;

18

 quantile;

 pseudo-random numbers.

For all distributions implemented in R, there is a function for each of the

four items listed above. The prefix name is given by d for the density, p for the

cumulated probability distribution function (CDF), q for the quantile function,

and r for pseudo-random numbers. For example, for the normal distribution,

these functions are named dnorm, pnorm, qnorm, and rnorm, respectively.

Here is an example of binomial distribution.

Example 3.1.1. Albino rats used to study the hormonal regulation of a meta-

bolic pathway are injected with a drug that inhibits body synthesis of protein.

The probability that a rat will die from the drug before the experiment is over is .2.

a) What is the probability that at least eight will survive?

> pbinom(2,10.2)

[1] 0.6777995.

There are three arguments to the pbinom() function. The first argument is

the yield value that indicates at least 2 rats will die. The following one specifies

the number of trials. The last argument is the probability that a rat will die from

the drug.

b) Would you be surprised if at least five died during the course of the

experiment?

> 1-pbinom(4,10.2)

[1] 0.0327935.

Consider an example for calculating the binomial probability.

Example 3.1.2. Geophysicists determine the age of a zircon by counting

the number of uranium fission tracks on a polished surface. A particular zircon

is of such an age that the average number of tracks per square centimeter is five.

What is the probability that a 2-centimeter-square sample of this zircon will

reveal at most three tracks, thus leading to underestimations of the age of the

material?

> ppois(3,10)

[1] 0.01033605.

There are two arguments to the ppois() function here. The first one is

the yield value and the last arguments specify the number of trials.

Consider now an example for calculating the normal probability.

19

Example 3.1.3. Most galaxies take the form of a flattened disc with the

major part of the light coming from this very thin fundamental plane. The degree

of flattening differs from galaxy to galaxy. In the Milky Way Galaxy most gases

are concentrated near the center of the fundamental plane. Let X denote the

perpendicular distance from this center to a gaseous mass. This X is normally

distributed with mean 0 and standard deviation 100 parsecs.

a) Sketch a graph of the density for X. Find the probability that a gaseous

mass is located within 200 parsecs (Fig. 3.1).

> plot(function(x) dnorm(x,0,100), -300, 300)

Fig. 3.1. The plot of the density of the normal distribution

 > pnorm(200,0,100)-pnorm(-200,0,100)

 [1] 0.9544997.

Here we use three arguments in the pnorm() function. These arguments

specify the yield value (200), the mean (0), and the standard deviation (100).

The function plot() is used to sketch a graph of the density for X in the

area within -300 and 300. There are many parameter arguments that can be

used for the plot call.

The function of density for X is created further. The R language allows

creating your own function. A function is defined by an assignment of the form:

> username <- function(arg_1, arg_2, ...) {expression}

-300 -200 -100 0 100 200 300

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

x

fu
n

c
ti
o

n
(x

)
d

n
o

rm
(x

,
0

,
1

0
0

)
(x

)

20

The expression is an R expression, (usually a grouped expression), that

uses the arguments arg_i to calculate a value. The value of the expression is

the value returned for the function. A call to the function then usually takes

the form username(expr_1, expr_2...) and may occur anywhere a function call

is legitimate. For example:

 myfunction <- function(arg1, arg2, ...){

 statements

 return(object)

 }

The objects in the function are local to the function. The object returned

can be any data type. Here is an example:

function example – get measures of central tendency,

and spread for a numeric vector x. The user has a

choice of measures and whether the results are printed.

mysummary <- function(x,npar = TRUE, print = TRUE) {

 if (!npar) {

 center <- mean(x); spread <- sd(x)

 } else {

 center <- median(x); spread <- mad(x)

 }

 if (print & !npar) {

 cat("Mean=", center, "\n", "SD=", spread, "\n")

 } else if (print & npar) {

 cat("Median=", center, "\n", "MAD=", spread, "\n")

 }

 result <- list(center=center,spread=spread)

 return(result)

}.

Invoking a function:

invoking the function

set.seed(1234)

x <- rpois(500, 4)

y <- mysummary(x)

Median = 4

MAD = 1.4826

21

y$center is the median (4)

y$spread is the median absolute deviation (1.4826)

y <- mysummary(x, npar = FALSE, print = FALSE)

no output

y$center is the mean (4.052)

y$spread is the standard deviation (2.01927).

b) Approximately what percentages of the gaseous masses are located

more than 250 parsecs from the center of the plane?

 > 1-(pnorm(250,0,100)-pnorm(-250,0,100))

 [1] 0.01241933.

To get the percentage of over 250 parsecs from the center of the plane,

the percentage of within 250 should be calculated:

pnorm(250,0,100)-pnorm(-250,0,100).

c) What distance has the property that 20 % of the gaseous masses are

at least this far from the fundamental plane?

 > qnorm(.1,0,100)

 [1] -128.1552

 > qnorm(.9,0,100)

 [1] 128.1552.

3.2. Descriptive statistics and graphics

3.2.1. Summary statistics for a single group

R comes with many built-in functions that can apply to the data. The char-

acteristics most used to measure the center and spread of data are the mean

and standard deviation. Here are some R commands needed when measuring

a data distribution:

 > mean(x) #find the average for data x.

 > var(x) #find the variance for data x.

 > median(x) #find the median for data x.

 > sd(x) #find the standard deviation for data x.

22

There are a large number of ways to examine the distribution of the data

set. The simplest way is to examine the numbers. There is a function frequently

used for summaries of data: summary(). Here is an example:

 > x = rnorm(50)

 > summary(x)

Min 1st Qu Median Mean 3rd Qu Max

-1.58300 -0.69710 0.10180 0.04832 0.63240 2.29200.

In this example the function rnorm() generates an artificial data vector x of

50 normally distributed observations. The summary() function displays a numeric

variable, in which 1st Qu and 3rd Qu refer to the empirical quartiles (0.25 and

0.75 quantiles).

3.2.2. The graphical display of distributions

The stem-and-leaf diagram is very useful for seeing the shape of the

distribution if the data set is relatively small. The number on the left of the bar

is the stem, the number on the right is the digit. You put them together to find

the observation. The R command for constructing a stem-and-leaf diagram is

> stem().

If there is too much data, you can try another graphical visualization of

data. The most common one is a histogram. The histogram defines a sequence

of breakpoints and then counts the number of observations in the bins formed

by these break points. (This is identical to the features of the cut() function.) It

plots these with a bar similar to the bar chart, but in a histogram the bars are

touching. The height of the bars can be the frequencies, or the proportions.

The command for constructing a histogram is

> hist().

It can take arguments that control the specific form of the display.

Let us consider a simple example. The observations have to be pre-

saved in the file named "6-11.txt", for example.

Example 3.2.1. Some efforts are currently being made to make textile

fibers out of peat fibers. This would provide a source of cheap feedstock for

the textile and paper industries. One variable being studied is X, the percentage

23

of the ash content of a particular variety of peat moss. Assume that a random

sample of 50 mosses yields these observations in the data file "6-11.txt":

0.5 1.8 4.0 1.0 2.0

1.1 1.6 2.3 3.5 2.2

2.0 3.8 3.0 2.3 1.8

3.6 2.4 0.8 3.4 1.4

1.9 2.3 1.2 1.9 2.3

2.6 3.1 2.5 1.7 5.0

1.3 3.0 2.7 1.2 1.5

3.2 2.4 2.5 1.9 3.1

2.4 2.8 2.7 4.5 2.1

1.5 0.7 3.7 1.8 1.7.

Input the data from the data file "6-11.txt":

> x = scan("6-11.txt")

a) Read 50 items:

> x

[1] 0.5 1.8 4.0 1.0 2.0 1.1 1.6 2.3 3.5 2.2 2.0 3.8 3.0 2.3 1.8 3.6 2.4 0.8 3.4

[20] 1.4 1.9 2.3 1.2 1.9 2.3 2.6 3.1 2.5 1.7 5.0 1.3 3.0 2.7 1.2 1.5 3.2 2.4 2.5

[39] 1.9 3.1 2.4 2.8 2.7 4.5 2.1 1.5 0.7 3.7 1.8 1.7

b) Construct a stem-and-leaf diagram for these data

> stem(x)

The decimal point is the sign "|":

 0 | 578

 1 | 012234

 1 | 55677888999

 2 | 00123333444

 2 | 556778

 3 | 001124

 3 | 5678

 4 | 0

 4 | 5

 5 | 0

24

c) Break these data into six categories.

Find the range of data, which is the difference between the largest

observation data max(x) and the smallest data min(x). Divide the range by the

number of categories (6) to get the minimum length required covering this

range:

 > (max(x)-min(x))/6

 [1] 0.75.

Set the boundaries and use the cut() function to break these data into six

categories:

 > breaks = c(seq(min(x)-0.05,max(x),.8),max(x)+.05)

 > breaks

 [1] 0.45 1.25 2.05 2.85 3.65 4.45 5.05

 > cats = cut(x, breaks = breaks)

The function seq() is used further to generate the sequence number from

the lower boundary "(min(x)-0.05)" to the maximum value (max(x)) by the

increment of "minimum length(.8)".

d) Construct a frequency table and a relative frequency histogram for

these data (Fig. 3.2).

Fig. 3.2. The relative frequency histogram for the sample

of Example 3.2.1.

Histogram of peat fibers

x

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

25

The command table() can use the cross-classifying factors to build a

contingency table of the counts at each combination of factor levels:

 > table(cats)

 cats

 (0.45,1.25] (1.25,2.05] (2.05,2.85] (2.85,3.65] (3.65,4.45] (4.45,5.05]

7 15 15 8 3 2

Use the function hist() to construct a histogram. The argument "breaks"

gives the breakpoints between histogram cells.

> hist(x, breaks = breaks, ylab = "Relative frequency", main = "Histogram of

peat fibers")

e) Construct a cumulative frequency table and a relative cumulative fre-

quency ogive for these data.

> cumtable = cumsum(table(cats))

> cumtable

(0.45,1.25] (1.25,2.05] (2.05,2.85] (2.85,3.65] (3.65,4.45] (4.45,5.05]

 7 22 37 45 48 50

The command cumsum() returns a vector whose elements are the

cumulative sums.

4. One- and two-sample tests

Now we will focus on the actual statistical analysis applications. Some

of the most used statistical tests deal with comparing continuous data, either

between two samples or against the a priori stipulated values.

4.1. Comparing the variance of two samples

R provides the var.test() (variance comparison testing) function for testing

two-variance comparison. This function implements an F-test on the ratio of

the group variances. The command is:

> var.test(x, ...)

26

R also provides a function for each of the four items similar to the

distribution mentioned in Section 3.1 as the F-distribution:

 > df(x, df1, df2, log = FALSE)

 > pf(q, df1, df2, ncp=0, lower.tail = TRUE, log.p = FALSE)

 > qf(p, df1, df2, lower.tail = TRUE, log.p = FALSE)

 > rf(n, df1, df2)

Let's consider an example for comparing the variance of two samples.

In this example, we don't know the sample data so we cannot use the simple

function var.test() for comparing the variance of two samples. Instead, we can

calculate the f-value first, then call the function pf() to construct the p-value of

the testing statistics. Then compare the p-value with the confidence level . We

can also use another function qf() to find the critical point instead of calculating

the p-value, then compare the observed f-value with the critical points.

Example 4.1.1. Test for equality of variances at the indicated level:

n1 = 10, var1 = .25; n2 = 8, var2 = .05; = .20.

Input the data:

 > n1 = 10

 > var1 = .25

 > n2 = 8

 > var2 = .05

 > alpha = .10

Calculate the observed value f:

 > f = var1/var2

 > f

 [1] 5.

Calculate the critical points using command qf() (quantiles f distribution).

Set the first argument to indicate the level, the following two arguments to

indicate the degree of freedom:

 > qf(alpha, n1-1, n2-1)

 [1] 0.3991517

 > qf(1-alpha, n1-1, n2-1)

 [1] 2.724678.

27

The observed value 5 is larger than the upper critical 2.72. Calculate the

p-value using the pf() (probabilities f distribution) command. The first argument

in this function is the vector of quantiles, the second and third ones are the

degrees of freedom, and the last one is specified to the upper tail. We choose

the upper tail ("lower.tail = F" – FALSE) for the absolute value of f and double

it to get the two-sided p-value.

 > 2*pf(f, n1-1, n2-1, lower.tail = F)

 [1] 0.04542107.

The inference: reject H0 (the null hypothesis) because the p-value is

smaller than = .05.

4.2. Comparing the means of two samples when

the variances are equal

The function t.test() is used for comparing the sample means:

> t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0,

paired = FALSE, var.equal = FALSE, conf.level = 0.95, ...)

There is a number of optional arguments in the t.test() function. Three

of them are relevant in one-sample problems. mu is to specify the mean value

 under the null hypothesis (default is mu = 0). In addition, you can specify

one of the alternative hypotheses to "alternative" (default is "two.sided"). The

third item that can be specified is the confidence level used for the confidence

intervals; you would write conf.level = 0.90 to get a 90 % interval. To get the

usual t-test for two-sample problems, it must be specified that variances are

the same. This is done via the optional argument var.equal = T.

R command has a function for each of four items, dt (density t distribution),

pt (cumulated probability t distribution), qt (quantiles t distribution), and rt (random

number generate t distribution).

 > dt(x, df, ncp = 0, log = FALSE)

 > pt(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

 > qt(p, df, lower.tail = TRUE, log.p = FALSE)

 > rt(n, df)

Consider an example of comparing the means of two samples.

28

Example 4.2.1. A study of reports written by engineers has been conducted.

A scale that measures the intelligibility of engineers' English has been devised.

This scale, called an "index of confusion", is devised so that low scores indicate

high readability.

 Journals Unpublished reports

 1.79 2.39

 1.87 2.56

 1.62 2.36

 1.96 2.62

 1.65 2.51

 1.75 2.29

 1.74 2.58

 2.06 2.41

 1.69 2.86

 1.67 2.49

 1.94 2.33

 1.33 1.94

 1.70 2.14

The observations have to be stored as a table in the data file "10-13.txt"

with the titles: the "header = TRUE" specifies that the first line is the header

containing the names of variables contained in the file.

 > x = read.table("10-13.txt", header = TRUE)

 > x

If we did everything right, we will get:

 Journals Unpublished reports

 1 1.79 2.39

 2 1.87 2.56

 3 1.62 2.36

 4 1.96 2.62

 5 1.65 2.51

 6 1.75 2.29

 7 1.74 2.58

 8 2.06 2.41

 9 1.69 2.86

29

 10 1.67 2.49

 11 1.94 2.33

 12 1.33 1.94

 13 1.70 2.14.

When we need to get the component of the table individually, a useful

way is giving the component name followed by "$" to the variable that is stored

in the table.

Get sample 1:

> a = x$Journals

> a

 [1] 1.79 1.87 1.62 1.96 1.65 1.75 1.74 2.06 1.69 1.67 1.94 1.33 1.70.

Get sample 2:

> b = x$Unpublishedreports

> b

 [1] 2.39 2.56 2.36 2.62 2.51 2.29 2.58 2.41 2.86 2.49 2.33 1.94 2.14.

a) Test H0: 12 = 22 at the = .2 level to be sure that pooling is

appropriate.

> var.test(a,b)

We use further the F-test to compare two variances.

Data: a and b.

F = 0.6477, the numerator df = 12, the denominator df = 12, the p-value =

= 0.463.

The alternative hypothesis: the true ratio of the variances is not equal to 1.

The 95 percent confidence interval:

[1] (0.1976 2.1227).

Sample estimates: the ratio of the variances is equal to

[1] 0.6477.

The inference: since the p-value 0.463 is larger than = .2, pooling is

appropriate.

30

b) Find sp2.

There is no function to get the sp value. We have to give the expression

for calculating the value sp:

 > sp2 = (12*var(a)+12*var(b))/24

 > sp2

 [1] 0.0432641

c) Find a 90 % confidence interval on 1 - 2, using the t.test() function:

> t.test(a,b,var.equal = T, conf.level = .9)

A two-sample t-test

Data: a and b.

t = -8.2124, df = 24, p-value = 1.979e-08.

The alternative hypothesis: the true difference in the means is not equal to 0.

The 90-percent confidence interval:

(-0.8095813 -0.5304187).

Sample estimates: the mean of x; the mean of y:

1.7515; 2.4215.

d) Does it appear to be a difference between 1 and 2? One can use

for this the t.test() function.

Data: a.

t = 34.2422, df = 12, the p-value = 2.449e-13.

The alternative hypothesis: the true mean is not equal to 0.

The 90-percent confidence interval:

(1.660372; 1.842705).

Sample estimates: the mean of x:

1.751538

> t.test(b, conf.level = .9)

31

A one-sample t-test

Data: b.

t = 38.1, df = 12, the p-value = 6.877e-14.

The alternative hypothesis: the true mean is not equal to 0.

The 90-percent confidence interval:

2.308261 2.534816

Sample estimates: the mean of x:

2.421538.

In the next example, the data of two samples are not given. We only know

the means and the variances of the samples. So we cannot simply use the

t.test() and the var.test() function for testing the statistics.

Example 4.2.2. Environmental testing is an attempt to test a component

under conditions that closely simulate the environment in which the component

will be used. An electrical component is to be used in two different locations

in Alaska. Before environmental testing can be conducted, it is necessary to

determine the soil composition in the localities. These data are obtained on

the percentage of SiO2 by weight of the soil:

Anchorage: n1 = 10, 1 = 64.94, var1 = 9.

Kodiak: n2 = 16, 2 = 57.06, var2 = 7.29.

Input the data:

 > n1= 10

 > mu1 = 64.94

 > var1 = 9

 > n2 = 16

 > mu2 = 57.06

 > var2 = 7.29

a) Test H0: var1 = var2 at the = .2 level.

Calculate the observed value:

 > f = var1 / var2

 > f

 [1] 1.234568.

32

Calculate the critical points, use the function qt (quantiles f-distribution).

The first argument is the vector of probabilities; the second and third ones are

the degrees of freedom of observations.

 > qf(.9,n1-1,n2-1)

 [1] 2.086209

 > qf(.1,n1-1,n2-1)

 [1] 0.4274191.

The observed value lies within the critical points.

Calculate the p-value, use the function pf (probabilities f-distribution).

The first argument is the vector of quantiles, the following two arguments are

the degrees of freedom of observations, and the last one is to indicate that we

want to see the upper tail of the distribution. We double it to get the two-sided

p-value.

 > 2*pf(f, n1-1, n2-1, lower.tail = F)

 [1] 0.6899627.

The inference: we cannot reject H0 since the p-value is larger than = 0.2.

b) Find sdpool2.

 > sdpool = sqrt(((n1 - 1) * var1 + (n2 - 1) * var2)/(n1 + n2 -2))

 > sdpool

 [1] 2.816248

 > sdpool^2

 [1] 7.93125

c) Find a 99 % confidence interval on 1- 2.

The lower point:

 > mu1-mu2+qt(0.995,n1+n2-2)*sqrt(sdpool^2*(1/n1+1/n2))

 [1] 11.05527

 The upper point:

 > mu1-mu2+qt(0.005,n1+n2-2)*sqrt(sdpool^2*(1/n1+1/n2))

 [1] 4.704731.

The inference: a 99 % confidence interval on 1- 2 is (4.7047; 11.0553).

33

4.3. Comparing the means of two samples when

the variances are unequal

The function t.test() also performs the two-sample t-test when we assume

the variances unequal. This is done without specifying the optional argument

var.equal in which the default value is False. Let's consider an example.

Example 4.3.1. A study is conducted to compare the tensile strength of

two types of roof coatings. It is thought that, on the average, butyl coatings

are stronger than acrylic coatings. The following data have been gathered:

Tensile strength, lb/in2

Acrylic Butyl

 246.3 247.7 287.5 248.3

 255.0 246.3 284.6 243.7

 245.8 214.0 268.7 276.7

 250.7 242.7 302.6 254.9

 340.7 263.4 272.6 271.4

 270.1 341.6 332.6 303.9

 371.6 307.0 362.2 324.7

 306.6 319.1 358.1 360.1

a) Input the data obtained:

> Acrylic = scan("acrylic.data")

1: 246.3 255.0 245.8 250.7 247.7 246.3 214.0 242.7 287.5 284.6 268.7 302.6

13: 248.3 243.7 276.7 254.9

17:

The function scan() reads 16 items.

> Butyl = scan("autyl.data")

1: 340.7 270.1 371.6 306.6 263.4 341.6 307.0 319.1 272.6 332.6 362.2 358.1

13: 271.4 303.9 324.7 360.1

17:

The function scan() reads 16 more items.

b) Is pooling appropriate?

> var.test(Acrylic, Butyl)

34

An F-test to compare two variances

Data: Acrylic and Butyl.

F = 0.3633, the numerator df = 15, the denominator df = 15, the p-value =

= 0.05878.

The alternative hypothesis: the true ratio of the variances is not equal to 1.

The 95-percent confidence interval:

(0.1269485 1.0399078).

Sample estimates

The ratio of variances:

0.3633.

The inference: because the p-value is very small, pooling is not appropriate.

c) Can H0 be rejected? Explain, based on the p-value of your test.

Because it is a one-sided test, we specified the test is desired against

alternatives less than (mean) by setting the optional argument: alternative =

"less".

> t.test(Acrylic, Butyl, alternative = "less")

The Welch's two-sample t-test

Data: Acrylic and Butyl.

t = -5.8755, df = 24.629, the p-value = 2.094e-06.

The alternative hypothesis: the true difference in the means is less than 0.

The 95-percent confidence interval:

(-Inf ; -43.86719).

Sample estimates: the mean of x, the mean of y:

257.2188; 319.0813.

The inference: the p-value = 2.094e-06 is very small, so the null

hypothesis is rejected.

35

Example 4.3.2. The aseptic packaging of juices is a method of packaging

that entails rapid heating followed by quick cooling to room temperature in an

air-free container. Such packaging allows the juices to be stored unrefrigerated.

Two machines used to fill aseptic packages are compared. These data are

obtained in the number of containers that can be filled per minute:

 Machine I: n1 = 25, 1 = 115.5, var1 = 25.2

 Machine II: n2 = 25, 2 = 112.7, var2 = 7.6

Input the data:

 > n1 = 25

 > mu1 = 115.5

 > var1 = 25.2

 > n2 = 25

 > mu2 = 112.7

 > var2 = 7.6.

a) Is pooling appropriate?

Calculate the observed value of test statistics:

 > f = var1 / var2

 > f

 [1] 3.315789.

Calculate the critical points using the function qf() (quantiles f distribution):

 > qf(.05,n1-1,n2-1)

 [1] 0.5040933

 > qf(.95,n1-1,n2-1)

 [1] 1.983760.

The inference: the observed value of the test statistics is bigger than the

upper critical point 1.984, so pooling is not appropriate.

Calculate the p-value:

 > 2*pf(f, n1-1, n2-1, lower.tail = F)

 [1] 0.004712739.

The inference: the p-value is very small, so pooling is not appropriate.

36

b) Construct a 90 % confidence interval on 1 - 2. For this, calculate

the number of degrees of freedom:

 > s1 = var1/n1

 > s2 = var2/n2

 > gamma =(s1+s2)^2/(s1^2/(n1-1)+s2^2/(n2-1))

 > gamma

 [1] 37.26928.

We obtain that the number of degrees of freedom is 37.

Find a 90 % confidence interval on 1 - 2. The function qt() (quantiles

t-distribution) is used in this case. The first argument of the function is the

probabilities and the second one is the degrees of freedom 37:

 > mu = mu1-mu2

 > q = qt(.05, 37)

 > qt(0.05,37)

 [1] q = -1.687094

 > mu - q*sqrt(s1+s2)

 [1] 4.73244

 > mu + q*sqrt(s1+s2)

 [1] 0.8675596.

The inference: the 90 % confidence interval on 1 - 2 is (0.8676;

4.7324).

4.4. A one-sample t-test

We will focus on the one-sample t-test in this section. If we only knew

the mean and standard deviation of a sample, how could we conduct the t-test

using the theoretical mean? We can use the command pt (probabilities t-dis-

tribution). In Example 4.4.1, we first construct the t.value, then calculate the

p-value. In Example 4.4.2, the sample data is given, so we can use the easier

way for statistical testing.

Example 4.4.1. A low-noise transistor for use in computing products is

being developed. It is claimed that the mean noise level will be below the 2.5-dB

level of products currently in use.

37

A sample of 16 transistors yields the mean x = 1.8 with the standard

deviation s = .8. Find the p-value for the t-test. Could we think that H0 should

be rejected? What assumption should we make concerning the distribution of

the random variable x, the noise level of a transistor?

Input the data:

 > sample.mean = 1.8

 > sample.sd = 0.8

 > n = 16

 > mu = 2.5.

Calculate the t-value:

 > t.value = (sample.mean - mu)/(sample.sd/sqrt(n))

 > t.value

 [1] -3.5.

Calculate the p-value using the R-function pt() (probabilities t distribution).

Set the vector of quantiles (t.value) to the first argument and set the degrees

of freedom to the second one:

 > p.value = pt(t.value, n - 1)

 > p.value

 [1] 0.001611765.

The inference: since the p-value is very small, H0 can be rejected.

Example 4.4.2. Clams, mussels, and other organisms that adhere to

the water intake tunnels of electrical power plants are called macrofoulants.

These organisms can, if left unchecked, inhibit the flow of water through the

tunnel.

Various techniques have been tried to control this problem, among them

increasing the flow rate and coating the tunnel with teflon, wax, or grease. In a

year's time at a particular plant an unprotected tunnel accumulates a coating of

macrofoulants that averages 5 inches in thickness over the length of the tunnel.

A new silicone oil paint is being tested. It is hoped that this paint will reduce

the amount of macrofoulants that adhere to the tunnel walls. The tunnel is

cleaned, painted with the new paint, and put back into operation under normal

working conditions.

38

At the end of a year's time the thickness in inches of the macrofoulants

coating is measured at 16 randomly selected locations within the tunnel.

These are the data:

4.2 4.5 4.1 4.6

4.4 4.0 4.7 4.3

5.0 6.2 3.6 4.5

5.1 3.5 3.0 2.8.

Input the data in the R environment:

> sample = scan("8-43.txt")

Read 16 items:

> sample

[1] 4.2 4.5 4.1 4.6 4.4 4.0 4.7 4.3 5.0 6.2 3.6 4.5 5.1 3.5 3.0 2.8

a) Do these data support the contention that the new paint reduces the

average thickness of the macrofoulants within this tunnel? Explain, based on

the p-value of the test.

In this case, there are three arguments. The argument "mu = 5" attaches

a value to the formal argument "mu", which represents the Greek letter

conventionally used for the theoretical mean. Normally, the t.test() uses the

default value "mu = 0", if it is not specified otherwise. The "alternative = "less"

indicated that the test is designed against alternatives less than :

> t.test(sample, mu = 5, alternative = "less")

A one-sample t-test

Data: the sample for which t = -3.4721, df = 15, the p-value = 0.001707.

The alternative hypothesis: the true mean is less than 5.

The 95-percent confidence interval:

(-Inf; 4.644142).

Sample estimates: the mean of x:

[1] 4.28125.

39

The inference: because the p-value based on the t.test() is very small,

the H0 can be rejected.

b) If had been preset at .05, would H0 have been rejected?

Because the p-value = 0.0017 < alpha = 0.05, H0 can be rejected.

4.5. Comparing the variance of a sample with a known value

Example 4.5.1. Incompatibility is always a problem when working with

computers. A new digital sampling frequency converter is being tested. It takes

the sampling frequency from 30 to 52 kilohertz, word lengths of 14 to 18 bits

and arbitrary formats and converts it to the output sampling frequency.

The conversion error is thought to have a standard deviation of less

than 150 picoseconds. These data are obtained on the sampling error made

in 20 tests of the device:

 133.2 -11.5 -126.1 17.9 139.4

 -81.7 314.8 147.1 -70.4 104.3

 56.9 44.4 1.9 -4.7 96.1

 -57.3 -43.8 -95.5 -1.2 9.9.

For these data: mean(x) = 28.69, std(x) = 104.93.

a) Test H0: = 0, H1: ≠ 0, at the = .1 level.

Input the data:

> sample = scan("8-49.txt")

Read 20 items:

> sample

 [1] 133.2 -11.5 -126.1 17.9 139.4 -81.7 314.8 147.1 -70.4 104.3

[11] 56.9 44.4 1.9 -4.7 96.1 -57.3 -43.8 -95.5 -1.2 9.9

A one-sample t-test

> t.test(sample)

Data: a sample.

40

t = 1.2225, df = 19, the p-value = 0.2365.

The alternative hypothesis: the true mean is not equal to 0.

The 95-percent confidence interval:

[1] -20.42544 77.79544

Sample estimates: the mean of x:

[1] 28.685.

The inference: because the p-value is bigger than alpha = .1, H0 cannot

be rejected.

b) Test H0: = 150, H1: < 150 at the = .1 level.

Calculate the observed value of the test statistics chi2:

 > sample.sd = sd(sample)

 > sample.sd

 [1] 104.9336

 > pop.sd = 150

 > n = 20

 > chi2 = (n - 1) * sample.sd^2/pop.sd^2

 [1] 9.2982.

Calculate the p-value using the function pchisq() (probabilities chisquared

distribution). The first argument is the vector of quantiles and the second one

is the degrees of freedom:

 > pchisq((n - 1) * sample.sd/pop.sd, n - 1)

 [1] 0.1767.

The inference: because the p-value is larger than alpha = .1, H0 cannot

be rejected.

c) Calculate the critical point, use the function qchisq() (quantiles

chisquared distribution). Attach the vector probabilities to the first argument

and the degrees of freedom to the second one:

> qchisq(0.1,n-1)

[1] 11.65091.

41

The inference: the observed value 9.3 is smaller than the critical point 11.7.

The way of comparing the variance of samples with a known value is shown

in the answer of question c).

When we test the hypothesis for the value of variance, the test statistic

used to test the hypothesis is known to follow a chi-squared distribution.

R has a function for the chi-squared distribution. In this example, we use the

functions pchisq() and qchisq() to calculate the p-value and critical points for

the statistic of the chi-squared distribution. It is called in a similar way as other

distributions introduced before.

5. Regression analysis

5.1. Simple linear regression

For linear regression analysis, the function lm() is used (liner model).

The lm() function can be used to carry out the simple and multiple linear

regression analysis. The next example will show how to use the R command

for linear regression analysis.

Example 5.1.1. An investigation was conducted to study gasoline

mileage in automobiles when used exclusively for urban driving. Ten properly

tuned and serviced automobiles manufactured during the same year were

used in the study. Each automobile was driven for 1000 miles and the average

number of miles per gallon (mi/gal) (y) and the weight of the car in tons (x) was

recorded at different ambient temperatures in K0(z). The data obtained are:

Car number: 1 2 3 4 5 6 7 8 9 10

Miles per

gallon (y)
17.9 16.5 16.4 16.8 18.8 15.5 17.5 16.4 15.9 18.3

Weight in

ton (x):
1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40

K0(z) 90 30 80 40 35 45 50 60 65 30

42

Input the data in R:

> weight = c(1.35, 1.90, 1.70, 1.80, 1.30, 2.05, 1.60, 1.80, 1.85, 1.40)

> temperature = c(90, 30, 80, 40, 35, 45, 50, 60, 65, 30)

> miles = c(17.9, 16.5, 16.4, 16.8, 18.8, 15.5, 17.5, 16.4, 15.9, 18.3)

Linear regression analysis

The linear regression function in R:

> lm(miles~weight+temperature)

The call:

lm(formula = miles ~ weight + temperature)

The coefficients:

 (Intercept) weight temperature

 24.74887 -4.15933 -0.01490

The argument to lm() is a model formula that describes the model to be

fit. In the formula, the tilde symbol "~" should be read as "described by".

The output of lm() is very brief. All you see is the coefficients, which indicate

the estimated intercept and the estimated slope for each variable. The best

fitting straight line can be obtained from these estimated values, but no other

information is given from the output. In fact, the lm-object contains much more

information than you see when it is printed.

The summary() is an extraction function that is used to print out the

desired quantities of a regression analysis:

> summary(lm(miles~weight+temperature))

The call:

lm(formula = miles ~ weight + temperature).

The results

The residuals:

 Min 1Q Median 3Q Max

 -0.185929 -0.077793 0.005608 0.105263 0.150812

43

The coefficients:

 Estimate Std. error t-value Pr(>|t|)

 (Intercept) 24.748874 0.348882 70.938 2.91e-11

 weight -4.159335 0.186705 -22.278 9.28e-08

 temperature -0.014895 0.002276 -6.545 0.00032

The inference: the residual standard error: 0.1416 on 7 degrees of freedom;

The multiple R-Squared: 0.9866; the adjusted R-squared: 0.9827;

F-statistic: 257.3 on 2 and 7 DF; the p-value: 2.798e-07.

The above is a format that looks more like what other statistical packages

would output.

5.2. Residuals and fitted values

There are two further extraction functions (fitted() and resid()) that

can be used to extract information about the results of a regression analysis.

Let's construct the residual and fitted values in R for the observations of

Example 5.1.1.

Store the value returned by the lm function under the name "lmMiles".

> lmMiles = lm(miles~weight+temperature)

Output the fitted values that you would expect for the given x-value

according to the # fitting straight line by the function fitted():

> fitted(lmMiles)

The results of applying this function are as follows:

 1 2 3 4 5

 17.79322 16.39929 16.48640 16.66627 18.82041

 6 7 8 9 10

 15.55196 17.34919 16.36837 16.08593 18.47895.

Show the difference between the above fitted values and the observed

values:

44

> resid(lmMiles)

 1 2 3 4 5

 0.10677943 0.10071238 -0.08640365 0.13372910 -0.02041326

 6 7 8 9 10

 -0.05196217 0.15081236 0.03162945 -0.18592873 -0.17895490.

5.3. The confidence and prediction interval

There are two kinds of bands around the fitted lines: the confidence

interval and the prediction interval. The predicted values for these two bands

can be extracted with the function predict(). The main arguments in the predict()

function are:

object: the linear mode object you want to predict values from;

newdata: an optional data frame in the which() function to look for

variables with which() to predict; if omitted, the fitted values are used;

interval: the type of the interval calculation, including "confidence" and

"prediction".

level: the tolerance/confidence level.

You can set interval = "confidence" or interval = "prediction" to obtain

the confidence or prediction interval by evaluating the regression functions.

Calculate the confidence and prediction interval for the regression

model of Example 5.1.1. The result of the linear regression is saved, for

example, in "lmMiles":

> predict(lmMiles,interval = "confidence")

 fit lwr upr

 1 17.79322 17.53515 18.05129

 2 16.39929 16.21686 16.58171

 3 16.48640 16.30320 16.66961

 4 16.66627 16.53203 16.80052

 5 18.82041 18.59530 19.04553

 6 15.55196 15.35477 15.74915

 7 17.34919 17.23703 17.46134

 8 16.36837 16.24054 16.49620

 9 16.08593 15.93504 16.23682

 10 18.47895 18.27011 18.68780.

45

The fit is the expected values, and lwr and upr are the lower and upper

confidence limits for the expected values. Because the argument "newdata" is

omitted here, the fitted values are used to produce the required bands. If you

want to find a confidence or prediction interval on the new data, you need to

add this new data in the argument "newdata".

Set the new data:

> newdata = data.frame(weight = 1.5, temperature = 40)

Find the confidence interval obtained by the regression function in the

newdata frame:

> predict(lmMiles, newdata, interval = "confidence")

 $fit

 fit lwr upr

 [1,] 17.91407 17.76318 18.06496

> predict(lmMiles, newdata, interval = "prediction", level = .90)

 fit lwr upr

 [1,] 17.91407 17.61982 18.20832.

You may set the confidence or prediction level to the argument "level =

= .90".

5.4. Correlation

The function cor() (correlation) can be used to compute the correlation

between two or more vectors.

Calculate the correlation between two predict or variables, miles and

weight.

 > cor(miles, weight)

 [1] -0.9510329.

You can obtain the entire matrix of correlations between all variables in

a data frame.

Set the data frame under the name x:

> x = data.frame(miles,weight,temperature)

> cor(x)

46

 miles weight temperature

 miles 1.0000000 -0.9510329 -0.1878411

 weight -0.9510329 1.0000000 -0.1022271

 temperature -0.1878411 -0.1022271 1.0000000.

Now you obtain the correlation between all variables. This is exactly the

same p-value as in the regression analysis in the output of the summary()

command.

5.5. Testing the hypotheses about the model parameters

R can automatically do a hypotheses test for the assumption 0 = 0,

1=0, 2= 0 … The testing p-value is included in the output of the summary()

command in the column Pr(>|t|).

> summary(lmMiles)

The call:

lm(formula = miles ~ weight + temperature)

The residuals:

 Min 1Q Median 3Q Max

 -0.185929 -0.077793 0.005608 0.105263 0.150812

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

 (Intercept) 24.748874 0.348882 70.938 2.91e-11

 weight -4.159335 0.186705 -22.278 9.28e-08

 temperature -0.014895 0.002276 -6.545 0.00032

The residual standard error: 0.1416 on 7 degrees of freedom.

The inference: the multiple R-squared: 0.9866; the adjusted R-squared:

0.9827; F-statistic: 257.3 on 2 and 7 DF, the p-value: 2.798e-07.

The inference: the p-values of the Pr(>|t|) column are very small, so all

of the hypotheses have to be rejected.

47

5.6. The criteria for selection of variables

The function step() can be used to choose a model by AIC (Akaike'

Information Criterion) in a stepwise algorithm. The main arguments to the

function are:

object: the object that is used as the initial model in the stepwise search;

direction: the mode of the stepwise search can be one of "both",

"backward", or "forward" with the default of "both"; if the "scope" argument is

missing, the default for direction is "backward";

trace: if positive, information is printed during the running of "step"; larger

values may give more detailed information.

steps: the maximum number of steps to be considered; the default is 1000.

Let's use the stepwise method to choose a regression model of

Example 5.1.1:

> step(lmMiles)

Start from AIC = -36.66;

miles ~ weight + temperature.

The result:

 Df Sum of Sq RSS AIC

 <none> 0.140 -36.662

 - temperature 1 0.859 0.999 -19.033

 - weight 1 9.951 10.091 4.091

The call:

lm(formula = miles ~ weight + temperature).

The coefficients:

 (Intercept) weight temperature

 24.74887 -4.15933 -0.01490.

The inference: the stepwise-selected model is returned.

48

5.7. Diagnostics

The influence() function provides the basic quantities that are used in

forming a wide variety of diagnostics for checking the quality of regression fits.

> influence(lmMiles)

$hat

 1 2 3 4 5

 0.5940565 0.2968422 0.2993973 0.1607538 0.4520247

 6 7 8 9 10

 0.3468339 0.1122063 0.1457563 0.2030800 0.3890490.

$coefficients

 (Intercept) weight temperature

 1 0.11543054 -0.127260994 2.362584e-03

 2 -0.02779725 0.049047656 -7.625658e-04

 3 0.05529260 -0.012707478 -8.826730e-04

 4 -0.01009853 0.030314626 -4.713150e-04

 5 -0.05720109 0.025699706 1.986451e-04

 6 0.07205954 -0.050574845 8.948367e-05

 7 0.06283837 -0.023070599 -1.372913e-04

 8 -0.01507530 0.008648304 8.175270e-05

 9 0.15034206 -0.077303183 -8.417170e-04

 10 -0.38631183 0.154322657 1.876765e-03.

$sigma

 1 2 3 4 5

 0.1367860 0.1448706 0.1470226 0.1408550 0.1525283

 6 7 8 9 10

 0.1506740 0.1382816 0.1523038 0.1271291 0.1210590.

$wt.res

 1 2 3 4 5

 0.10677943 0.10071238 -0.08640365 0.13372910 -0.02041326

 6 7 8 9 10

 0.05196217 0.15081236 0.03162945 -0.18592873 -0.17895490.

The result of influence() contains the following components:

hat: a vector containing the diagonal of the "hat" matrix;

49

coefficients: a matrix whose i-th row contains the change in the estimated

coefficients which results when the i-th case is dropped from the regression.

sigma: a vector whose i-th element contains the estimate of the residual

standard deviation obtained when the i-th case is dropped from the regression.

wt.res: a vector of weighted residuals.

There is a set of functions that can be used to compute some of the

regression (leave-one-out deletion) diagnostics for linear and generalized linear

models.

5.7.1. Studentized deleted residuals

The functions rstudent() (residual studentized) and rstandard()

(residual standardized) are used to obtain the studentized and standardized

residuals respectively.

> rstudent(lmMiles)

 1 2 3 4 5

 1.2252170 0.8290415 -0.7021213 1.0363558 -0.1807929

 6 7 8 9 10

 -0.4267142 1.1574880 0.2246932 -1.6383022 -1.8912248

5.7.2. Hat matrix leverage

> hatvalues(lmMiles)

 1 2 3 4 5

 0.5940565 0.2968422 0.2993973 0.1607538 0.4520247

 6 7 8 9 10

 0.3468339 0.1122063 0.1457563 0.2030800 0.3890490

Note: the hatvalues() function gives the same result with the values of

the hat component in the influence function.

5.7.3. The influence on single fitted values – DFFITS

> dffits(lmMiles)

 1 2 3 4 5

 1.48215679 0.53865748 -0.45898682 0.45357044 -0.16420334

 6 7 8 9 10

 -0.31094671 0.41149928 0.09281384 -0.82702815 -1.50918391.

50

5.7.4. The influence on all fitted values – Cook's distance

> cooks.distance(lmMiles)

 1 2 3 4 5

 0.683339996 0.101239673 0.075706564 0.067857705 0.010428696

 6 7 8 9 10

 0.036493352 0.053830944 0.003322094 0.183778982 0.554937168.

5.7.5. The influence on the regression coefficients – DFBETAS

> dfbetas(lmMiles)

 (Intercept) weight temperature

 1 0.34249727 -0.70559225 1.07471017

 2 -0.07787532 0.25676649 -0.32752396

 3 0.15263745 -0.06555043 -0.37356120

 4 -0.02909806 0.16322254 -0.20820198

 5 -0.15220605 0.12778442 0.08103511

 6 0.19410255 -0.25456366 0.03695314

 7 0.18443299 -0.12653035 -0.06177668

 8 -0.04017292 0.04306461 0.03339930

 9 0.47996934 -0.46116093 -0.41197125

 10 -1.29514655 0.96679126 0.96462535.

5.8. Examples

Example 5.8.1. The body fat example. We want to study the relation of

the amount of body fat (y) to several possible predictor variables, based on a

sample of 20 healthy females 25 – 34 years old. The possible predictor

variables are triceps skinfold thickness (x1), thigh circumference (x2), and

midarm circumference (x3). The amount of body fat for each of the 20 persons

was obtained by a cumbersome and expensive procedure requiring the

immersion for the person in water.

1) Read the data from the data file.

> BodyFat = scan("CH07TA01.DAT", list(x1 = 0, x2 = 0, x3 = 0, y = 0))

51

Read 20 records. The first argument is the name of the file where the data

are reading from. The second argument is a dummy list structure that

establishes the mode of the vectors to be read. The result, BodyFat, is a list

whose components are the three vectors read in. You can access the vectors

separately like: BodyFat$x1, BodyFat$x2, BodyFat$y.

2) List the data:

> BodyFat

$x1

 [1] 19.5 24.7 30.7 29.8 19.1 25.6 31.4 27.9 22.1 25.5 31.1 30.4 18.7 19.7

14.6 29.5 27.7 30.2 22.7 25.2

$x2

 [1] 43.1 49.8 51.9 54.3 42.2 53.9 58.5 52.1 49.9 53.5 56.6 56.7 46.5 44.2

42.7 54.4 55.3 58.6 48.2 51.0

$x3

 [1] 29.1 28.2 37.0 31.1 30.9 23.7 27.6 30.6 23.2 24.8 30.0 28.3 23.0 28.6

21.3 30.1 25.7 24.6 27.1 27.5

$y

 [1] 11.9 22.8 18.7 20.1 12.9 21.7 27.1 25.4 21.3 19.3 25.4 27.2 11.7 17.8

12.8 23.9 22.6 25.4 14.8 21.1

3) Regression of y on x1:

> lm(BodyFat$y~BodyFat$x1))

The call:

lm(formula = BodyFat$y ~ BodyFat$x1).

The coefficients:

 (Intercept) BodyFat$x1

 -1.4961 0.8572.

4) Summary of the regression of y on x1, x2, and x3:

> summary(lm(BodyFat$y~BodyFat$x1+BodyFat$x2+BodyFat$x3))

52

The call:

lm(formula = BodyFat$y ~ BodyFat$x1 + BodyFat$x2 + BodyFat$x3).

The residuals:

 Min 1Q Media 3Q Max

 -3.7263 -1.6111 0.3923 1.4656 4.1277

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

 (Intercept) 117.085 99.782 1.173 0.258

 BodyFat$x1 4.334 3.016 1.437 0.170

 BodyFat$x2 -2.857 2.582 -1.106 0.285

 BodyFat$x3 -2.186 1.595 -1.370 0.190

The inference: the residual standard error: 2.48 on 16 degrees of freedom;

the multiple R-squared: 0.8014; the adjusted R-squared: 0.7641; F-statistic:

21.52 on 3 and 16 DF, the p-value: 7.343e-06.

5) Testing the assumptions of the model of regression of y on x1 and x2.

The validity of the model can be checked graphically. We can use the plot

function to test if the regression model is significant. We can test for correlations

by looking if there are trends in the data. This can be done with plots of the

residuals vs time and order. We can test the assumption that the errors have the

same variance with plots of residuals vs time order and fitted values.

The plot command will do these tests if we give it the result of the

regression. It will plot 4 separate graphs unless you tell R to place 4 graphs on

one plot window in advance with the function par(mfrow = c(2,2)), Fig. 5.1. The

function par() (parameters) is used to set the graphical parameters. A vector of

the form c(2,2) is set to the argument mfrow, which tell you the subsequent

figures will be drawn in a nrow-by-ncolumn array on the device by rows.

Save the result of regression y on x1 and x2 under the name of lmResult.

> lmResult = lm(BodyFat$y~BodyFat$x1+BodyFat$x2)

Set the argument of graphical parameters to indicate the subsequent

graphs that will be displayed in 2 rows by 2 columns fashion on the same plot

window.

> par(mfrow = c(2,2))

53

Plot four graphs of the regression model.

> plot(lmResult)

This is different from the plot(x,y), which produces a scatter plot. There

are four plots produced by plot (lmResult):

 Residuals vs fitted. This plots the fitted values against the residuals.

Look for spread around the line y = 0 and no obvious trend.

 Normal Q-Q plot. The residuals are normal if this graph falls close to

a straight line.

 Scale-Location plot. This plot shows the square root of the standardized

residuals. The tallest point has the largest residuals.

 Cook's distance plot. This plot identifies which plot has a lot of influence

in the regression line.

Fig. 5.1. Four scatter plot graphs for the regression model

12 14 16 18 20 22 24 26

-4
-2

0
2

4

Fitted values

R
e
s
id

u
a
ls

Residuals vs Fitted

8

13

2

-2 -1 0 1 2

-1
0

1
2

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q-Q plot

13

8

3

12 14 16 18 20 22 24 26

0
.0

0
.4

0
.8

1
.2

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Scale-Location plot
13 8 3

5 10 15 20

0
.0

0
.2

0
.4

Obs. number

C
o
o
k
's

 d
is

ta
n
c
e

Cook's distance plot

3

13

14

54

6) Examine whether there are outlying y observations with two predictor

variables (x1, x2).

Calculate the studentized residuals for the regression model:

> rstudent(lmResult)

 1 2 3 4

 -0.7299854027 1.5342541325 -1.6543295725 -1.3484842072

 5 6 7 8

 -0.0001269809 -0.1475490938 0.2981276214 1.7600924916

 9 10 11 12

 1.1176487404 -1.0337284208 0.1366610657 0.9231785040

 13 14 15 16

 -1.8259027246 1.5247630510 0.2671500921 0.2581323416

 17 18 19 20

 -0.3445090997 -0.3344080836 -1.1761712768 0.4093564171.

Cases 3, 8, and 13 have the largest absolute studentized residuals. Now

we use the Bonferroni test procedure with a significance level = .10 to test if

case 13, which has the largest absolute studentized residual, is an outlier.

The function qt() (quantile t-distribution) gives the quantile value of

t-distribution. The first argument is the significance level, the second one is

the degrees of freedom.

>qt(.9975,16)

[1] 3.251993

The inference: since |t13| = 1.825 3.252, we conclude that case 13 is

not an outlier.

7) Identifying outlying observations.

Calculate the hat matrix for identifying outlying observations.

> hatvalues(lmResult)

 1 2 3 4 5

 0.20101253 0.05889478 0.37193301 0.11094009 0.12861620

 6 7 8 9 10

 0.24801034 0.15551745 0.09628780 0.11463564 0.11024435

 11 12 13 14 15

 0.12033655 0.10926629 0.17838181 0.14800684 0.33321201

55

 16 17 18 19 20

 0.09527739 0.10559466 0.19679280 0.06695419 0.05008526.

The two largest leverage values are h3,3 = .372 and h15,15 = .333. Both

exceed the criterion of the two mean leverage values, 2p/n = 2(3)/20 = .30,

and both are separated by a substantial gap from the next largest leverage

value, h55 = .248 and h11 = .201. Having identified cases 3 and 15 as outlying

in terms of their x-values, obtain the influence on the single fitted value –

DFFITS:

> dffits(lmResult)

 1 2 3 4

 -3.661472e-01 3.838103e-01 -1.273067e+00 -4.763483e-01

 5 6 7 8

 -7.292347e-05 -5.668650e-02 1.279371e-01 5.745212e-01

 9 10 11 12

 4.021649e-01 -3.638725e-01 5.054583e-02 3.233366e-01

 13 14 15 16

 -8.507812e-01 6.355141e-01 1.888521e-01 8.376829e-02

 17 18 19 20

 -1.183735e-01 -1.655265e-01 -3.150707e-01 9.399706e-02.

The only DFFITS value that exceeds the guideline for a medium-size

data set is for case 3, where |(DFFITS) 3| = 1.273. This value is somewhat

larger than the guideline of 1. However, the value is close enough to 1, so

that the case may not be influential enough to require remedial action.

Obtain the influence on all fitted values – Cook's distance:

> cooks.distance(lmResult)

 1 2 3 4

 4.595055e-02 4.548118e-02 4.901567e-01 7.216190e-02

 5 6 7 8

 1.883399e-09 1.136518e-03 5.764939e-03 9.793853e-02

 9 10 11 12

 5.313352e-02 4.395704e-02 9.037986e-04 3.515436e-02

 13 14 15 16

 2.121502e-01 1.248925e-01 1.257530e-02 2.474925e-03

 17 18 19 20

 4.926142e-03 9.636470e-03 3.236006e-02 3.096787e-03.

56

Case 3 has the largest Cook's distance value, with the next largest

distance measure D13 = .212 being substantially smaller. To assess the mag-

nitude of the influence of case 3 (D3 = .490), we refer to the corresponding

F-distribution.

The function pf() (probability of f-distribution) gives the F distribution

function. Here we set the probability = .490 to the first argument and the

degrees of freedom 3 and 7 to the second and third arguments of function qt().

> pf(.490,3,17)

[1] 0.3061611.

The influence on the regression coefficients – dfbetas():

> dfbetas(lmResult)

 (Intercept) BodyFat$x1 BodyFat$x2

 1 -3.051821e-01 -1.314856e-01 2.320319e-01

 2 1.725732e-01 1.150251e-01 -1.426129e-01

 3 -8.471013e-01 -1.182525e+00 1.066903e+00

 4 -1.016120e-01 -2.935195e-01 1.960719e-01

 5 -6.372122e-05 -3.052747e-05 5.023715e-05

 6 3.967715e-02 4.008114e-02 -4.426759e-02

 7 -7.752748e-02 -1.561293e-02 5.431634e-02

 8 2.614312e-01 3.911262e-01 -3.324533e-01

 9 -1.513521e-01 -2.946556e-01 2.469091e-01

 10 2.377492e-01 2.446010e-01 -2.688086e-01

 11 -9.020885e-03 1.705640e-02 -2.484518e-03

 12 -1.304933e-01 2.245800e-02 6.999608e-02

 13 1.194147e-01 5.924202e-01 -3.894913e-01

 14 4.517437e-01 1.131722e-01 -2.977042e-01

 15 -3.004276e-03 -1.247567e-01 6.876929e-02

 16 9.308463e-03 4.311347e-02 -2.512499e-02

 17 7.951208e-02 5.504357e-02 -7.609008e-02

 18 1.320522e-01 7.532874e-02 -1.161003e-01

 19 -1.296032e-01 -4.072030e-03 6.442931e-02

 20 1.019045e-02 2.290797e-03 -3.314146e-03.

Case 3 is the only case that exceeds the guideline of 1 for the medium-

size data sets for both x1 and x2. Thus, case 3 is again tagged as potentially

influential. However, the DFBETAS values do not exceed 1 by very much so

that case 3 may not be so influential as to require remedial action.

57

Example 5.8.2. Chemical shipment. The data to follow, taken on 20 incoming

shipments of chemicals in drums arriving at a warehouse, show the number

of drums in the shipment (x1), the total weight of the shipment (x2, in hundred

pounds), and the number of minutes required to handle the shipment (y).

Input the data:

> ChemiShip = scan("CH06PR09.DAT", list(y = 0, x1 = 0, x2 = 0))

Read 20 records. Show the data set:

> ChemiShip

$y

 [1] 58 152 41 93 101 38 203 78 117 44 121 112 50 82 48 127 140 155 39

[20] 90

$x1

 [1] 7 18 5 14 11 5 23 9 16 5 17 12 6 12 8 15 17 21 6 11

$x2

 [1] 5.11 16.72 3.20 7.03 10.98 4.04 22.07 7.03 10.62 4.76 11.02 9.51

[13] 3.79 6.45 4.60 13.86 13.03 15.21 3.64 9.57.

a) Obtain the studentized deleted residuals and identify any outlying y

observations. Use the Bonferroni's outlier test procedure with = 0.05. State

the decision rule and conclusion.

Save the result of the regression model:

> lmOut = lm (ChemiShip$y~ChemiShipx1+ChemiShipx2)

Obtain the studentized deleted residuals:

> rstudent(lmOut)

 1 2 3 4 5

 0.42675254 -0.80047414 0.48150671 0.24531968 0.08475496

 6 7 8 9 10

 -0.89457378 0.20652191 0.92718720 -0.10385591 -0.44555083

 11 12 13 14 15

 -0.45241008 3.62623361 0.90389470 0.13072481 -1.75127470

 16 17 18 19 20

 -0.60782399 1.22203071 -0.95432624 -1.02583519 -0.61414823.

58

In the upper list of the studentized deleted residuals, cases 12, 15, and 17

are the most outlying ones. We test case 12, which has the largest absolute

studentized deleted residual (3.626) with = 0.05.

Use the function qt() (quantiles of Student t-distribution) to calculate the

quantile value with = 0.05. The probability of Student's t-distribution and the

degrees of freedom are set to the arguments:

> qt(1-0.05/40,16)

[1] 3.580522

The inference: since |t12| = 3.626 > 3.580, we conclude that case 12 is

an outlier.

The second largest case |t15| = 1.75 < 3.58, so this case is not an outlier.

b) Identify any outlying x-observations.

Obtain the hat matrix leverage:

> hatvalues(lmOut)

 1 2 3 4 5

 0.09133349 0.19376540 0.13099986 0.26847934 0.14900387

 6 7 8 9 10

 0.14056367 0.42868587 0.06651639 0.13453992 0.16452717

 11 12 13 14 15

 0.17857817 0.05138802 0.11031467 0.15597401 0.0953742

 16 17 18 19 20

 0.12815463 0.09698045 0.23049569 0.11180602 0.07251911.

The inference: the largest leverage value is h77 = 0.429. It exceeds the

criterion of twice the mean leverage value, 2p/n = 2(3) / 20 = .30. The next two

largest leverage values are case 4 and case 18, but both of them are much smaller

than the value of case 7. So we identify case 7 as an outlying x observation.

c) Management wishes to predict the number required to handle the

next shipment containing x1 = 15 drums whose total weight is x2 = 8 (hundred

pounds). Construct a scatter plot of x2 against x1 and determine visually

whether this prediction involves an extrapolation beyond the range of the data.

Add the predictor values to x1 and x2:

> addx1 = c(ChemiShip$x1,15)

> addx2 = c(ChemiShip$x2, 8)

59

Construct a scatter plot of x2 against x1:

> plot (addx1, addx2)

R provides a useful function identify() to find the index of the closest (x; y)

coordinates to the mouse click. The function identify reads the position of the

graphics pointer when the (first) mouse button is pressed. It then searches the

coordinates given in x and y for the point closest to the pointer. If this point is

close to the pointer, its index will be returned as part of the value of the call.

Three arguments are set to the function: the coordinates of the points in

a scatter plot and the number of the points we want to identify. We identify the

three outliers and find the corresponding index:

 > identify(addx1, addx2, n = 3)

 [1] 16 21 4

In the obtained scatter plot, the predictor value case 21 falls within the

range of the scatter area, so this prediction involves an extrapolation beyond

the range of the data.

Read the data from the data frame separately:

 > y = ChemiShip$y

 > x1 = ChemiShip$x1

 > x2 = ChemiShip$x2

Create a data frame for setting the estimation data set:

> new = data.frame(x1 = 15, x2 = 8)

Compute the prediction interval for all the regression data sets:

> predict(lm(y~x1+x2), interval = "prediction")

 fit lwr upr

 1 55.65775 43.27632 68.03918

 2 156.08097 143.13151 169.03043

 3 38.41952 25.81509 51.02395

 4 91.78733 78.43879 105.13587

 5 100.54737 87.84301 113.25173

 6 42.68637 30.02876 55.34399

 7 202.09731 187.93088 216.26374

 8 72.94678 60.70694 85.18662

60

 9 117.55927 104.93512 130.18341

 10 46.34368 33.55379 59.13357

 11 123.35921 110.49239 136.22603

 12 96.84849 84.69576 109.00121

 13 45.18459 32.69595 57.67323

 14 81.30495 68.56211 94.04779

 15 56.83527 44.43094 69.23960

 16 130.24902 117.66045 142.83759

 17 133.56918 121.15576 145.98260

 18 159.71512 146.56796 172.86229

 19 44.42265 31.92563 56.91967

 20 93.38515 81.11091 105.65939.

Compute the prediction interval for the estimated data set:

> predict(lm(y~x1+x2), new, interval = "prediction")

 fit lwr upr

 [1,] 100.4826 87.1526 113.8127.

d) Case 7 appears to be an outlying x-observation and case 12 an

outlying y-observation. Obtain the DFFITS, DFBETAS, and the Cook's distance

values for each of these cases to assess their influence. With these, one can

conclude the following.

Obtain the DFFITS:

> dffits(lmOut)

 1 2 3 4 5

 0.13529722 -0.39242323 0.18695102 0.14861906 0.03546501

 6 7 8 9 10

 -0.36178109 0.17889501 0.24750183 -0.04094805 -0.19771969

 11 12 13 14 15

 -0.21094213 0.84399998 0.31828507 0.05619611 -0.56863730

 16 17 18 19 20

 -0.23303720 0.40047521 -0.52230327 -0.36396220 -0.17173031.

The largest DFFITS value is 0.843 of case 12, but this value does not

exceed 1, which is the guideline for the medium data set, so there is no

influence case in this measurement.

61

Obtain the DFBETAS:

> dfbetas(lmOut)

 (Intercept) ChemiShip$x1 ChemiShip$x2

 1 0.122855552 -0.04327413 0.0098720883

 2 0.061012751 0.14958419 -0.2528778589

 3 0.176732390 -0.05463481 -0.0008834814

 4 -0.025976645 0.13138441 -0.1317456914

 5 0.017823424 -0.02787250 0.0287067303

 6 -0.351927749 0.19100547 -0.0943824289

 7 -0.060748101 -0.05685992 0.1123483643

 8 0.198609085 -0.08507044 0.0451016524

 9 0.012636770 -0.03157524 0.0264043658

 10 -0.187199214 0.13499584 -0.0892584612

 11 0.080846469 -0.17385681 0.1449559800

 12 0.353791892 -0.12188051 0.1378580288

 13 0.286042063 -0.05861754 -0.0316941000

 14 0.001831733 0.04311705 -0.0463174805

 15 -0.370513959 -0.12638404 0.2571081607

 16 -0.021673104 0.11848066 -0.1618347451

 17 -0.138884614 0.16427966 -0.0672002726

 18 0.312765306 -0.35456723 0.2165300133

 19 -0.320519790 0.04866628 0.0553440075

 20 -0.099571789 0.09480214 -0.0927223402

The inference: there is no case's DFBETAS value that exceeds guide-

line 1, so no case influences the regression model.

Obtain the Cook's distance:

> cooks.distance(lmOut)

 1 2 3 4

 0.0064101777 0.0524401531 0.0122015599 0.0077933871

 5 6 7 8

 0.0004452592 0.0441472158 0.0113044124 0.0205890007

 9 10 11 12

 0.0005934465 0.0136757853 0.0155601581 0.1384778737

62

 13 14 15 16

 0.0341358732 0.0011172659 0.0960985497 0.0187994039

 17 18 19 20

 0.0519524153 0.0914135514 0.0440206341 0.0102042828.

Case 12 has the largest Cook's distance value 0.1385, the next largest

distance D15 = 0.096 is substantially small. Let's test the influence of case 12.

Compute the F-distribution function using pf (probability f distribution):

> pf(0.1385, 3,17)

[1] 0.06439451

Case 12 is the 6th percentile of this distribution, so it does not have any

influence on the fitted values.

e) Calculate the Cook's distance Di for each case and prepare an index

plot. Are any cases influential according to this measure?

Construct an index plot by using the plot function. The argument is set as

the result of the regression lmOut. The output of the plot function is 4 separate

graphs. You can see the graphs sheet by sheet by pressing the enter button.

The index plot of the Cook's distance is the last graph (Fig. 5.2):

> plot(lmOut)

Fig. 5.2. The index plot for the Cook's distance

5 10 15 20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Obs. number

C
o

o
k
's

 d
is

ta
n

c
e

lm(formula = ChemiShip$y ~ ChemiShip$x1 + ChemiShip$x2)

Cook's distance plot

12

15
18

63

The inference: in this index plot, the most influential case is case 12,

and cases 15 and 18 are two next largest influential ones to this regression

model.

Example 5.8.3. Cosmetics sales. An assistant in the district sales office

of a national cosmetics firm obtained data, shown below, on advertising

expenditures and sales last year in the district's 14 territories. X1 denotes

expenditures for point-of-sale displays in beauty salons and department stores

(in thousand dollars), and X2 and X3 represent the corresponding expenditures

for local media advertising and the prorated share of national media

advertising, respectively. Y denotes sales (in thousand cases). The assistant

was instructed to estimate the increase in the expected sales when X1 is

increased by 1 thousand dollars and X2 and X3 are held constant, and was told

to use an ordinary multiple regression model with a linear term for the predictor

variables and with independent normal error terms:

 i Yi X1i X2i X3i

 1 8.26 4.2 4.0 3.0

 2 14.70 6.5 6.5 5.0

 3 9.73 3.0 3.5 4.0

 4 5.62 2.1 2.0 3.0

 5 7.84 2.9 3.0 4.0

 6 12.18 7.2 7.0 3.0

 7 8.56 4.8 5.0 4.5

 8 10.77 4.3 4.0 5.0

 9 7.56 2.6 2.5 5.0

 10 8.90 3.1 3.0 4.0

 11 12.51 6.2 6.0 4.5

 12 10.46 5.5 5.5 5.0

 13 7.15 2.2 2.0 4.0

 14 6.74 3.0 2.8 3.0

a) State the regression model to be employed and fit it to the data.

Input the data. The data was saved in the file CH09PR13.DAT:

> CosmeticsSales = scan ("CH09PR13.DAT", list(Y = 0, X1 = 0, X2 = 0, X3 = 0))

64

Read 14 records:

> CosmeticsSales

$Y

 [1] 8.26 14.70 9.73 5.62 7.84 12.18 8.56 10.77 7.56 8.90 12.51

 [12] 10.46 7.15 6.74

 [13]

$X1

 [1] 4.2 6.5 3.0 2.1 2.9 7.2 4.8 4.3 2.6 3.1 6.2 5.5 2.2 3.0

$X2

 [1] 4.0 6.5 3.5 2.0 3.0 7.0 5.0 4.0 2.5 3.0 6.0 5.5 2.0 2.8

$X3

 [1] 3.0 5.0 4.0 3.0 4.0 3.0 4.5 5.0 5.0 4.0 4.5 5.0 4.0 3.0.

Build the regression model and save the regression result:

>lm_Result =

+lm(CosmeticsSales$Y~CosmeticsSales$X1+CosmeticsSales$X2+Cosmetics

Sales$X3)

Summary results:

> summary(lm_Result)

The call:

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1 + CosmeticsSales$X2 +

+ CosmeticsSales$X3)

The residuals:

 Min 1Q Median 3Q Max

 -2.20899 -0.30679 -0.04512 0.55678 1.58152

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.9796 1.7270 0.567 0.5831

CosmeticsSales$x1 0.4096 1.5423 0.266 0.7959

CosmeticsSales$x2 0.8300 1.5633 0.531 0.6071

CosmeticsSales$x3 0.8163 0.4144 1.970 0.0771 .

65

The inference: the residual standard error: 1.152 on 10 degrees of freedom;

the multiple R-squared: 0.8402; the adjusted R-squared: 0.7922; F-statistic:

17.52 on 3 and 10 DF; the p-value: 0.0002627.

As a result of the investigation, the fitted regression model is as follows:

Y = 0.9796 + 0.4096 X1 + 0.83 X2 + 0.8163 X3.

b) Test whether there is a regression relation between sales and the

three predictor variables; use the = .05 significance level.

Chose a model using the R command step():

> step(lm_Result)

Start: AIC = 7.26.

CosmeticsSales$Y ~ CosmeticsSales$X1 + CosmeticsSales$X2 +

+ CosmeticsSales$X3.

Result:

 Df Sum of Sq RSS AIC

 CosmeticsSales$x1 1 0.0936 13.3699 5.3553

 CosmeticsSales$x2 1 0.3742 13.6505 5.6460

 CosmeticsSales$x3 1 5.1524 18.4287 9.8479

Step: AIC = 5.36.

CosmeticsSales$Y ~ CosmeticsSales$X2 + CosmeticsSales$X3

 Df Sum of Sq RSS AIC

 CosmeticsSales$x3 1 5.065 18.434 7.852

 CosmeticsSales$x2 1 52.989 66.359 25.784

The call function:

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X2 + CosmeticsSales$X3).

The coefficients:

 (Intercept) CosmeticsSales$X2 CosmeticsSales$X3

 1.0690 1.2419 0.7978

The inference: based on the upper result, the final model obtained is a

two-variable model:

Y = 1.0690 + 1.2419X2 + 0.7978X3.

66

c) Test each of the regression coefficients k (k = 1, 2, 3) individually

whether or not k = 0, use = .05 each time. Do the conclusions of these

tests correspond to those obtained in part b?

Occasionally an experimenter might suspect that a particular predictor

variable is not really very useful. To decide whether or not this is the case, we

test the null hypothesis that the coefficient for this variable is 0. That is, we test:

Test if 1 = 0:

> summary(lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1))

The call function:

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X1).

The residuals:

 Min 1Q Median 3Q Max

 -1.6940 -1.1413 0.1314 0.7602 2.2192

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

(Intercept) 3.9663 0.9292 4.268 0.00109

CosmeticsSales$X1 1.3099 0.2101 6.236 4.34e-05

The results:

the residual standard error: 1.278 on 12 degrees of freedom;

the multiple R-Squared: 0.7642; the adjusted R-squared: 0.7445;

F-statistic: 38.89 on 1 and 12 DF; the p-value: 4.343e-05.

The inference: based on the upper testing result, pt = 0.0000434, it is

much smaller than 0.05/2, so this hypothesis is rejected.

The predictor variable X1 is needed in the model that contains the other

predictor variables.

Test if 2 = 0.

> summary(lm(formula = CosmeticsSales$y ~ CosmeticsSales$x2))

The call function:

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X2).

67

The residuals:

 Min 1Q Median 3Q Max

 -2.0523 -0.9807 0.0863 0.8561 2.0887

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

(Intercept) 3.9488 0.8970 4.402 0.000862

CosmeticsSales$x 2 1.3327 0.2055 6.487 2.99e-05

The results:

the residual standard error: 1.239 on 12 degrees of freedom;

the multiple R-squared: 0.7781; the adjusted R-squared: 0.7596;

F-statistic: 42.08 on 1 and 12 DF; the p-value: 2.994e-05.

The inference: based on the upper testing result, pt = 0.00002.99, it is

smaller than .05/2, so the hypothesis is rejected.

The conclusion: the predictor variable X2 is useful in predicting the value

of the response.

Test if 3 = 0:

> summary(lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X3))

The call function:

lm(formula = CosmeticsSales$Y ~ CosmeticsSales$X3).

The residuals:

 Min 1Q Median 3Q Max

 -3.1033 -1.4112 -0.2792 0.4594 4.3331

The coefficients:

 Estimate Std. Error t-value Pr(>|t|)

(Intercept) 3.622 3.357 1.079 0.302

CosmeticsSales$X3 1.408 0.810 1.739 0.108

The results:

the residual standard error: 2.352 on 12 degrees of freedom;

the multiple R-squared: 0.2012; the adjusted R-squared: 0.1346;

F-statistic: 3.023 on 1 and 12 DF; the p-value: 0.1077.

The inference: we get the p-value from this result: pt = 0.108, it is

greater than 0.05/2, so we cannot reject this hypothesis.

68

The conclusion: the predictor variable X3 is not useful in predicting the

value of the response Y. It is not needed in the model that contains the other

predictor variables.

d) Obtain the correlation matrix of the X variables. Create the data frame

for the variables:

>Cosmetics = data.frame(X1 = CosmeticsSales$X1, X2 = CosmeticsSales$X2,

X3 = CosmeticsSales$X3)

Use the function cor() (correlation) to obtain the correlation matrix of the

X variables:

> cor(Cosmetics)

 X1 X2 X3

 X1 1.0000000 0.9922085 0.2143812

 X2 0.9922085 1.0000000 0.2365410

 X3 0.2143812 0.2365410 1.0000000.

6. Power analysis

First, the definition of power: it is the probability of detecting a specified

effect at a specified significance level. Now this specified effect refers to the

effect size which can be the result of an experimental manipulation or the

strength of a relationship between 2 variables. And this effect size is "specified"

because prior to the power analysis we should have an idea of the size of the

effect we expect to see. The "probability of detecting" a bit refers to the ability

of a test to detect an effect of a specified size. The recommended power is 0.8

which means we have an 80 % chance of detecting an effect if one truly exists.

The main output of a power analysis is the estimation of a sufficient

sample size. This is of pivotal importance of course. If our sample is too big, it

is a waste of resources; if it is too small, we may miss the effect (p > 0.05)

which would also mean a waste of resources.

From a more practical point of view we need to justify our sample size

which we can do through a power analysis. Finally, it is all about the ethics of

research, which is encapsulated in the Home office's 3 R: Replacement,

Refinement and Reduction.

69

The latter in particular relates directly to power calculation as it refers to

the methods which minimize animal use and enable the researcher to obtain

comparable levels of information from fewer animals' (NC3Rs website).

When should we run your power analysis? It depends of what we expect

from it: the most common output being the sample size, we should run it before

doing the actual experiment (a priori analysis). The correct sequence from

hypothesis to results should be:

Hypothesis

Experimental design

Choice of a Statistical test

Power analysis

Sample size

Experiment(s)

Statistical analysis of the results

The power analysis depends on the relationship between 6 variables:

the effect size of biological interest, the standard deviation, the significance

level, the desired power, the sample size and the alternative hypothesis.

The significance level is about the p-value, it is generally agreed to be

5 % and we will come back to it later. The desired power, as mentioned

earlier, is usually 80 %. The alternative hypothesis is about choosing between

one and 2-sided tests, it is a technical thing and we will come back to it later

as well. So we are left with the 3 variables on which we have pretty much no

control or about which we cannot decide arbitrarily: the effect size, the sample

size and the standard deviation. To help understand what they are and how

much they are connected, here is an example.

Let's make it simple, say we are studying a gene which is expressed in

the brain and we are using a mouse model. Our hypothesis is that knocking

out (KO) that gene will affect the mouse's behavior. The next step is to design

the experiment. We are going to create a KO mouse in which gene A is

inoperative and we are going to compare WT (wild type) and KO mice's

behavior through a set of tasks.

70

Let's say that the output of one of these tasks is a quantitative variable,

the time taken by the mouse to achieve one task for example. Now we need

to translate the hypothesis for this particular task into a statistical question.

The hypothesis is that knocking out gene A will affect KO mice behavior

which can be quantified by a change in the time taken to achieve the task.

Statistically we need to know: what type of data we are going to collect

(time), which test we are going to use to compare the 2 genotypes and how

many mice we will need. When thinking about the sample size, it is very

important to consider the difference between technical and biological replicates.

Technical replicates involve taking several samples from one tube and

analyzing them across multiple conditions. Biological replicates are different

samples measured across multiple conditions.

First, the sample size, the name itself is self-explanatory. The aim of a

power analysis is usually to find the appropriate sample size as in the one

which will allow us to detect a specified effect. This effect, also called effect

size of biological interest, can only be determined scientifically not statistically.

It is either a difference that would be meaningful biologically, like an increase/

decrease of 10 % or 20 % for a particular variable, or what we expect to get

based on preliminary data. The larger the effect size, the smaller the

experiment will need to be to detect it.

The Standard Deviation (SD) is basically the noise in our data, the

variability we observe between our values. This we get ideally from a pilot

study or from previous experiments or even the literature.

Now going back to the effect size, there are actually 2 different ones:

the absolute one which is basically the difference between the mean value of,

say, our control group and the one of our treatment group, and the relative

one, also referred to as Cohen's d. This one is the more useful and more

widely used one as it accounts for the variability in our data.

Cohen's d:

The significance level refers to the famous p-value which, for a test to

be significant, should be below 0.05 (the 5 % threshold). Going back to our

experiment about finding out more on gene A, we would define the p-value as

the probability that a difference as big as the one observed between the WT

and the KO could be found even if the knock-out of gene A does not affect

the mouse's behavior.

71

Basically it means that if we find a significant difference (p < 0.05)

between our 2 groups of mice, so corresponding to the effect size of biological

interest, there is less than 5 % chance that we would have been able to observe

it if the knocking out of gene A did not affect the behavior of the mouse.

The last variable is the so-called alternative hypothesis: a one- or two-

sided test. This refers to the distribution of our variable: are we going to look at

one side or at the two sides of it. In other words, and again going back to our

experiment, do we want to answer the question: does it take longer to KO mice

to achieve the task or do we simply want to know if there is a difference at all.

Most of the time, in bench science, we go for the second question, even

though we might think of one direction more than the other. We don't have

enough evidence to choose to look only at one side of the distribution. It is

pretty much only in clinical trials that people go for one-sided tests. They have

already tested a particular drug for example in many systems/species so they

have plenty of evidence about the effect of the drug.

Finally, it is 2 times easier to reach significance with a one-side test

than with a two-side one so a reviewer will always be suspicious if we go for

the first one and if he asked for justification, we'd better have one!

The basic idea behind the power analysis is that if we fix any five of the

variables, a mathematical relationship can be used to estimate the sixth. So

going back one more time to our example, running the power analysis, our

question can be: What sample size do I need to have an 80 % probability

(power) to detect an average 5 minutes difference (effect size and standard

deviation) at a 5 % significance level using a two-sided test? The variables are

all linked and will vary as shown in the diagram (Fig. 6.1).

Fig. 6.1. The power of the t-test diagram.

Now here is the good news, there are packages that can do the power

analysis for us, providing of course we have some prior knowledge of the key

72

parameters. Mostly we need to have some idea of the difference we are

expecting to see or that would make sense, together with some information

on the standard deviation.

About power analysis, the important message is: after we have designed

your experiment, run a power analysis to estimate the appropriate sample

size that will allow us to do good and ethical science.

7. Qualitative data

Packages needed for the course can be downloaded by the following

command:

>install.packages(c("beanplot","gmodels","plotrix","car","pastecs","reshape2"))

Let's talk about the important stuff: your data. The first thing you need to

do good stats is to know your data inside out. They are generally organized into

variables, which can be divided into 2 categories: qualitative and quantitative

and in this chapter we will only look at the former.

Qualitative data are non-numerical data and the values taken can be

names (also nominal data, e.g. causes of death in a hospital). The values can

also be numbers but not numerical (e.g. an experiment number is a numerical

label but not a unit of measurement). A qualitative variable with intrinsic order

in their categories is ordinal. Finally, there is the particular case of qualitative

variable with only 2 categories, it is then said to be binary or dichotomous

(e.g. alive/dead or male/female).

We are going to use an example to go through the analysis and the

plotting of categorical data.

Example 7.1. (File: cats.dat, for example.)

A researcher is interested in whether cats could be trained to line dance.

He tries to train them to dance by giving them either food or affection as a

reward (training) for dance-like behavior.

At the end of the week a note is made of which animal could line dance

and which could not (dance). All the variables are dummy variables (categorical).

The pivotal question is: Is there an effect of training on cats' ability to learn

to line dance? You have already designed your experiment and chosen your

statistical test: it will be a Fisher's exact test (or a Chi-square test) and the

power analysis with qualitative data.

73

The next step is to run a power analysis. In an ideal world, you would

have run a pilot study to get some idea of the type of effect size you are

expecting to see. Let's start with this ideal situation. Let's say, in your pilot study,

you found that 30 % of the cats did line dance after received affection and 70 %

did so after received food.

So we want to compare 2 proportions (0.3 and 0.7), we will be using the

function power.prop.test() from R:

> power.prop.test(p1 = .3, p2 = .7, power = .8, sig.level = 0.05).

R tells us that we need 2 samples of 23 cats to reach a power of 80 %.

In other words: if we want to be at least 80 % confident to spot a reward

effect, if indeed there is one, we will need about 46 cats altogether.

Next, the experiment is run and the data collected:

cats.data<-read.table("cats.dat", sep = "\t",header = T).

It is always worth having a quick look at the data:

> head(cats)

> View(cats)

The next step, plotting the data:

> plot(cats.data$Training, cats.data$Dance, xlab = "Training", ylab = "Dance")

The result of applying this function is presented in Fig. 7.1.

The categorical data are sometimes best presented as contingency tables:

> table(cats.data)

The result:

Percentages can be more informative than raw data. The second line

gives the values as percentage integers:

 > contingency.table <- table(cats.data)

 > contingency.table100<-prop.table(contingency.table,1)

 > contingency.table100<-round(contingency.table100*100)

 > contingency.table100

74

Fig. 7.1. The initial categorical data

The result:

Then we can plot the data as percentage/proportion:

> plot(contingency.table100, col=c("white","darkgrey"),cex.axis=1)

The result of applying this function is presented in Fig. 7.2.

As mentioned before, to analyze such data we need to use a Fisher's

exact test but we could also use a Chi2 (2) test.

Both tests will give us the sameish p-value for big samples but for small

samples the difference can be more important and the p-value given by Fisher's

exact test is more accurate. Having said that, the calculation of the Fisher's

exact test is quite complex whereas the one for 2 is quite easy so only the

calculation of the latter is going to be presented here. Also, the Fisher's test is

often only available for 2x2 tables, so in a way the χ2 is more general.

75

Fig. 7.2. The data as percentage/proportion

For both tests, the idea is the same: how different are the observed

data from what we would have expected to see by chance i.e. if there were

no association between the 2 variables. Or, looking at the table we may also

ask: knowing that 76 of the 200 cats did dance and that 162 of them received

affection, what is the probability that those 76 dancers would be so unevenly

distributed between the 2 types of reward?

8. The null hypothesis and the error types

The null hypothesis (H0) corresponds to the absence of effect (e.g. the

animals rewarded by food are as likely to line dance as the ones rewarded by

affection) and the aim of a statistical test is to accept or to reject H0.

As mentioned earlier, traditionally, a test or a difference are said to be

significant if the probability of Type I error is: α 0.05 (max α = 1). It means

that the level of uncertainty of a test usually accepted is 5 %.

It also means that there is a probability of 5 % that we may be wrong

when we say that our two means are different, for instance, or we can say

that when we see an effect, we want to be at least 95 % confident that

something is significantly happening.

76

Summing: if our p-value is between 5 % and 10 % (0.05 and 0.10), one

would not reject it too fast.

It is often worth putting this result into perspective and asking ourselves

a few questions like:

What does the literature say about what I am looking at?

What if I had a bigger sample?

Have I run other tests on similar data and were they significant or not?

The interpretation of a border line result can be difficult, so it is important

to look at the whole picture.

The specificity and the sensitivity of a test are closely related to Type I

and Type II errors.

Specificity = Number of True Negatives / (Number of False Positives +

+ Number of True Negatives). A test with a high specificity has a low Type I

error rate.

Sensitivity = Number of True Positives / (Number of False Negatives +

+ Number of True Positives). A test with a high sensitivity has a low Type II

error rate.

9. The chi-squared test

It could be either: A) a one-way test, which is basically a test that

compares the observed frequency of a variable in a single group with what

would be the expected by chance or B) a two-way test, the most widely

used, in which the observed frequencies for two or more groups are compared

with expected frequencies by chance. In other words, in this case, the tells

you whether or not there is an association between two categorical variables.

An important thing to know about the , and for the Fisher's exact test for

that matter, is that it does not tell us anything about causality; it is simply

measuring the strength of the association between two variables and it is our

knowledge of the biological system we are studying which will help us to interpret

the result. Hence, we generally have an idea of which variable is acting the other.

The value is calculated using the formula below:

http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors

77

The observed frequencies are the ones we measured, the values that

are in our table. Now, the expected ones are calculated this way:

Expected frequency = (row total)*(column total)/grand total.

So, for example: the expected frequency of cats that would line dance

after having received food as reward is:

(76*38)/200 = 14.44.

We can also think in terms of probabilities:

 probability of line dancing: 38/200,

 probability of receiving food: 76/200.

If the two events are independent, the probability of them occurring at

the same time (the expected frequency) will be: 38/200*76/200 = 0.072 and

7.2 % of 200 is 14.4.

Intuitively, one can see that we are kind of looking for 50/50 (random

output) results but accounting for the counts we have. If we work out the values

for all the cells, we get the following.

To run a analysis, we are going to use the chisq.test() function. Now,

if we use the default version, R will give us the p-value with Yates continuity

correction. All corrections for statistical tests work the same way: they increase

the p-value. The reason is that if we are applying a correction, it is because we

are using a test on data that do not meet the assumptions for it. Misusing a

statistical test means that the output (i.e. the p-value) should not be trusted and

as a consequence it is very likely that there is an increase of the probability of

making the Type I error. So the solution is to increase the p-value, hence

making it more difficult to reach significance thus reducing the probability of

making the Type I error.

There is only one assumption that we have to be careful about when we

run a : with 2x2 contingency tables we should not have cells with an

expected count below 5 as if it is the case, it is likely that the test is not accurate

(for larger tables, all expected counts should be greater than 1 and no more

than 20 % of expected counts should be less than 5).

If we remember the s formula, the calculation gives us an estimation

of the difference between our data and what we would have obtained if there

was no association between our variables. Clearly, the bigger the value of the

, the bigger the difference between observed and expected frequencies and

the more likely the difference is to be significant.

78

Now with a 2x2 table, the way to go is usually a Fisher's exact test:

> fisher.test().

As we can see here, the p-values vary slightly between the two-sided

tests (p = 1.31e-06 vs p = 4.77e-07) though the conclusion remains the same:

cats only care about food. Though the samples are not very big here, the

assumption for the is met so you can choose either test.

10. Quantitative data

Packages needed for this chapter: plotrix, car, pastecs, beanplot, and

reshape2.

When it comes to quantitative data, more tests are available but

assumptions must be met before applying them. In fact, there are two types

of statistical tests: parametric and non-parametric ones. Parametric tests

have four assumptions that must be met for the tests to be accurate. Non-

parametric tests are based on ranks and they make few or no assumptions

about population parameters like normality (e.g. Mann-Whitney test).

10.1. Descriptive statistics

The median: The median is the value exactly in the middle of an ordered

set of numbers.

Example 1: 18 27 34 52 54 59 61 68 78 82 85 87 91 93 100, Median = 68

Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60

10.2. The mean

On average, µ = average of all values in a column. It can be considered

as a model because it summaries the data.

Example 10.1. The number of friends of each member of a group of 5

lecturers: 1, 2, 3, 3 and 4. Mean: (1+2+3+3+4)/5 = 2.6 friends per lecturer:

clearly a hypothetical value!

Now, if the values were: 1, 1, 1, 1 and 9 the mean would also be 2.6 but

clearly it would not give an accurate picture of the data. So, how can we know

that it is an accurate model? We look at the difference between the real data

79

and our model in Fig. 10.1. To do so, we calculate the difference between the

real data and the model created and we make the sum so that we get the

total error (or sum of differences).

Fig. 10.1. The difference between the real data and the model

The difference is:

= (-1.6) + (-0.6) + (0.4) + (0.4) + (1.4) = 0.

And we get no errors! Of course, positive and negative differences cancel

each other out. So to avoid the problem of the direction of the error, we can

square the differences and instead of the sum of errors, we get the Sum of

Squared errors (SS). In our example:

SS = (-1.6)2 + (-0.6)2 + (0.4)2 + (0.4)2 + (1.4)2 = 5.20.

10.3. The variance

This SS gives a good measure of the accuracy of the model but it is

dependent upon the amount of data: the more data, the higher the SS. The

solution is to divide the SS by the number of observations (N). As we are interested

in measuring the error in the sample, to estimate the one in the population, we

divide the SS by N-1 instead of N and we get the variance (S2) = SS/(N-1). In

our example: Variance (S2) = 5.20 / 4 = 1.3. Why N-1 instead of N?

If we take a sample of 4 scores in a population, they are free to vary but

if we use this sample to calculate the variance, we have to use the mean of

80

the sample as an estimate of the mean of the population. To do that, we have

to hold one parameter constant.

Example 10.2. The mean of the sample is 10. We assume that the

mean of the population from which the sample has been collected is also 10.

If we want to calculate the variance, we must keep this value constant which

means that the 4 scores cannot vary freely. If the values are 9, 8, 11 and 12

(mean = 10) and if we change 3 of these values to 7, 15 and 8, then the final

value must be 10 to keep the mean constant.

If we hold 1 parameter constant, we have to use N-1 instead of N. It is

the idea behind the degree of freedom: one less than the sample size.

10.4. The standard deviation (S.D.)

The problem with the variance is that it is measured in squared units,

which is not very nice to manipulate. So for more convenience, the square

root of the variance is taken to obtain a measure in the same unit as the

original measure: the standard deviation: S.D. = √SS/(N-1) = √(S2), in our

example: S.D. = √(1.3) = 1.14. So you would present your mean as follows:

µ = 2.6 1.14 friends.

The standard deviation is a measure of how well the mean represents

the data or how much our data are scattered around the mean. In Fig. 10.2

the difference between the low and high standard deviations is shown. Small

S.D.: data close to the mean: mean is a good fit of the data (graph on the

left). Large S.D.: data distant from the mean: mean is not an accurate

representation (graph on the right)

Fig. 10.2. The low and high standard deviations

81

10.5. Standard deviation vs standard error

Many are confused about the difference between the standard deviation

(S.D.) and the standard error of the mean (S.E.M. = S.D. / √N). This difference

is represented in Fig. 10.3.

The S.D. (the graph on the left) quantifies the scatter of the data and

increasing the size of the sample does not decrease the scatter (above a

certain threshold).

The S.E.M. (the graph on the right) quantifies how accurately we know

the true population mean, it's a measure of how much we expect the sample

means to vary. So the S.E.M. gets smaller as our samples get larger: the mean

of a large sample is likely to be closer to the true mean than is the mean of a

small sample.

A small S.E.M. means that most sample means are similar to the

population mean and so our sample is likely to be an accurate representation

of the population.

Fig. 10.3. The difference between the S.D. (left) and S.E.M. (right)

10.6. Which error measure to choose?

The choice depends, first of all, on the subject researched. If the scatter

is caused by biological variability, it is important to show the variation. So it is

more appropriate to report the S.D. rather than the S.E.M. Even better, we

82

can show in a graph all data points, or perhaps report the largest and

smallest value.

If we are using an in vitro system with theoretically very little biological

variability, the scatter can only result from experimental imprecision (no

biological meaning). It is more sensible then to report the S.E.M. since the

S.D. is less useful here. The S.E.M. gives the readers a sense of how well

we have determined the mean.

Choosing between S.D. and S.E.M. also depends on what we want to

show. If we just want to present our data on a descriptive purpose, then we

go for the SD. If we want the reader to be able to infer an idea of significance,

then you should go for the SEM or the confidence interval (CI). We will go a

bit more in details later.

10.7. The confidence interval

The confidence interval quantifies the uncertainty in measurement. The

mean we calculate from our sample of data points depends on which values

we happened to sample. Therefore, the mean we calculate is unlikely to equal

the true population mean. The size of the likely discrepancy depends on the

variability of the values and the sample size. If we combine those together, we

can calculate a 95 % confidence interval, which is a range of values. If the

population is normal (or nearly so), there is a 95 % chance that the confidence

interval contains the true population mean (pop.mean). For example, 95 % of

observations in a normal distribution lie within pop.mean 1.96*S.E.

One other way to look at error bars is shown in Fig. 10.4 and Table 10.1.

Fig. 10.4. The bar-representation of data scattering around the mean

83

Table 10.1

The differences between the S.D. and the S.E.M.

Error bars Type Description

Standard deviation (S.D.) Descriptive

Typical or average difference

between the data points and

their mean

Standard error (S.E.M.) Inferential

A measure of how variable

the mean will be if you repeat

the whole study many times

Confidence interval,

usually 95 %
Inferential

A range of values contained in

the 95 % CI around the mean

If we want to compare experimental results, it could be more appropriate

to show inferential error bars such as S.E. or CI rather than S.D. If we want to

describe our sample, for instance its normality, then the S.D. would be the one

to choose.

However, if n is very small (for example n = 3), rather than showing

error bars and statistics, it is better to simply plot the individual data points as

it is sown in Fig. 10.5 and 10.6.

Fig. 10.5. The SE-bars

We can estimate
statistical significance
using the overlap rule

for SE bars.

84

Fig. 10.6. The CI-bars

The assumptions of parametric data can be represented graphically

(Fig. 10.7).

Fig. 10.7. Graphical representation of data scattering

 When we are dealing with quantitative data, the first thing we should

look at is how they are distributed, how they look like. The distribution of our

data will tell us if there is something wrong in the way we collected them or

enter them and it will also tell us what kind of test we can apply to make them

say something.

The t-test, analysis of variance and correlation tests, belongs to the

family of parametric tests and to be able to use them, our data must comply

with the following four assumptions.

1. The data have to be normally distributed (normal shape, bell shape,

Gaussian shape).

In the same way, you can
estimate statistical

significance using the
overlap rule for 95 % CI

bars.

85

An example of normally distributed data is presented in Fig. 10.8.

Fig. 10.8. The theoretical pdf and the histogram of the normally

distributed data

The real data are not always distributed normally. There are two main types

of departure from normality: skewness (the lack of symmetry of a distribution) and

kurtosis (the measure of the degree of "peakedness" in the distribution). The two

distributions in Fig. 10.10 have the same variance, approximately the same skew,

but differ markedly in kurtosis. as shown in Fig. 10.9 and 10.10.

Fig. 10.9. Asymmetry in the data distribution

Fig. 10.10. "Peakedness" in the data distribution

86

2. Homogeneity in variance: the variance should not change systematically

throughout the data.

3. Interval data: the distance between the points of the scale should be

equal at all parts along the scale.

4. Independence: data from different subjects are independent so that

values corresponding to one subject do not influence the values corresponding

to another subject. Basically, it means one measure per subject. There are

specific designs for repeated measure experiments.

How can we check that our data are parametrically normal? Let's try to

do it through an example.

Example. We want to know if male coyotes are bigger than female coyotes.

Of course, before doing anything else, we design our experiment and we are

told that to compare two samples we need to apply a t-test (we will explain this

test later). So basically we are going to catch coyotes and hopefully we will

manage to catch males and females. Now, the tricky question here is how

many coyotes do we need?

11. The power analysis with a t-test

Let's say, we don't have data from a pilot study but we have found

some information in the literature. In a study run in similar conditions as in the

one we intend to run, male coyotes (n = 20) were found to measure on

average: 92cm 7cm (SD). We expect a 5 % difference between genders

with a similar variability in the female sample.

The R-function in this case will be:

> power.t.test(n = , d = , sig.level = , power = , type = c("two.sample",

"one.sample", "paired"))

with d being the Cohen's distance, M1 and M2, the corresponding means and

s1 and s2 standard deviations. In R it will be:

 numerator <- abs(mean1-mean2)

 denominator<- sqrt(((s1*s1)+(s2*s2))/2)

87

 mean1<-92

 mean2<-87.4 (5% less than 92cm)

 s1<-7

 s2<-7

 d<- numerator/ denominator

 d.

You should further get:

[1] 0.6571429.

So now:

> power.t.test(d = d, sig.level = 0.05, power = 0.8)

The default Type is two.sample2, so there is no need to specify it. Then

we obtain:

 <- n = 37.33624

 <- delta = 0.6571429

 <- sd = 1

 <- sig.level = 0.05

 <- power = 0.8

 <- alternative = two.sided.

Note: n is the number in each group. We obtain the needed sample size

of n = 76 (2*38).

Once the data are collected, we need to check it for normality. Though

normality tests are good, the best way to get a really good idea of what is

going on is to plot our data.

When it comes to normality, there are three ways to plot our data:

the box plot, the scatter plot and the histogram. This has been done in R in

Fig. 11.1 – 11.5. To get the data in R:

coyote<-read.csv("coyote.csv", header = TRUE)

View(coyote) or head(coyote).

Now let's start with the stripchart() function:

stripchart(coyote$length~coyote$gender, vertical = TRUE, method = "jitter",

las = 1, ylab = "Lengths", pch = 16, col = c ("darkorange", "purple"), cex = 1.5,

at = c(1.2,1.8)).

88

Fig. 11.1. Scatter plots

Now you may want to improve this graph by adding the group means

(Fig. 11.2).

Another way to explore the data is the boxplot (Fig. 11.3):

length.means <- tapply(coyote$length,coyote$gender,mean)

loc.strip<- c(1.2,1.8)

segments(loc.strip-0.15, length.means, loc.strip+0.15, length.means, col =

"black", lwd = 3)

boxplot(coyote$length~coyote$gender, col = c("orange", "purple")).

89

Fig. 11.2. Adding the groups means

Fig. 11.3. Box plots

The anatomy of a boxplot is explained in the graph below. It is very

important that you know how a box plot is built. It is rather simple and it will

allow us to get a pretty good idea about the distribution of your data at a

glance.

90

If the distribution is normal-ish then the box plot should be symmetrical-

ish and if both (like in our case) are of the same size-ish, then we can be

confident that the variances are about the same.

Fig. 11.4. Confidence intervals on box plots

Regarding the outliers, there is no really right or wrong attitude. If there

is a technical issue or an experimental problem, you should remove it of

course but if there is nothing obvious, it is up to you. I would always

recommend keeping outliers if we can; we can run the analysis with and

without it for instance and see what effect it has on the p-value. If the

outcome is still consistent with our hypothesis, then we should keep it. If not,

then it is between you and your conscience.

In Fig. 11.5, we can see the relationship between the box plot and the

histogram.

Beanplots can be more informative than a boxplot in terms of "hidden"

distribution especially with big datasets as we can see in Fig 11.6, but they do

not identify outliers.

91

Fig. 11.5. The relationship between the box plot and the histogram

Fig. 11.6. Beanplots

http://upload.wikimedia.org/wikipedia/commons/8/89/Boxplot_vs_PDF.png

92

Really, the beanplots look quite informative. More detailed graphics is

given in Fig. 11.7.

> beanplot(coyote$length~coyote$gender, las=1,

ylab="Length (cm)") ## beanplot package ##

Fig. 11.7. Beanplots in details

11.1. Histograms in R

The histograms in R can be built using the hist() function (Fig. 11.8):

> par(mfrow=c(1,2))

>hist(coyote[coyote$gender == "male",]$length, main = "Male",

> xlab = "Length", col = "lightblue")

>hist(coyote[coyote$gender == "female",]$length, main = "Female",

> xlab = "Length", col = "pink")

93

Fig. 11.8. Histograms in R

So from the graphs we have plotted, we can say that the first and second

assumptions are likely to be met: the data seem normal enough (symmetry of

the graphs) and the variability seems comparable between the groups (spread

of the data). Frequently preference goes to the box plot as it tells you in one go

anything you need to know: where you are with the first two assumptions and it

shows you the outliers.

Still we may come across cases where it is not that obvious so you can

ask R to test for normality (Shapiro – Wilk test or D'Agostino and Pearson

tests) and homogeneity of variance (Levene test). Here we are going to use

two new functions: stat.desc(), which gives a statistical summary of the data,

and the test for normality (Shapiro – Wilk test). Also we can use the tapply()

function, which allow us to do it for males and females separately in one go:

> tapply(coyote$length,coyote$gender, stat.desc, basic = F, desc = F, norm = T)

pastecs package ##.

94

There is no significant departure from normality for females (p = 0.316)

or males (p = 0.819).

That was the first assumption. Now we can check the second assumption

(homogeneity of variances) using the Levene test. The second assumption:

> leveneTest(coyote$length, coyote$gender, center = mean) ## car package ##.

So good again but not surprising news: the variances of the two

genders do not differ significantly (p = 0.698).

Don't be too quick to switch to nonparametric tests. While they do not

assume Gaussian distributions, these tests do assume that the shape of the

data distribution is the same in each group. So if your groups have very

different standard deviations and so are not appropriate for a parametric test,

they should not be analyzed for its non-parametric equivalent either. However

parametric tests like ANOVA and t-tests are rather robust, especially when

the samples are not too small so you can get away with small departure from

normality and small differences in variances. Often the best approach is to

transform the data using logarithms or reciprocals with restoring equal

variance.

Finally we may want to represent the data as a classical bar chart. To

achieve that, we can type the lines below:

bar.length<-barplot(length.means, col = c("pink", "lightblue"), ylim = c(50,100),

beside = TRUE, xlim = c(0,1), width = 0.3, ylab = "Mean length", las = 1, xpd

= FALSE, las = 1)

 ## plotrix package ##

 length.se<-tapply(coyote$length,coyote$gender,std.error)

Now, to plot the error bars, we are going to use arrow(). We need to

specify the coordinates (x, y). barplot () returns the values of the center of the

bars as we can see in Fig. 11.9:

>arrows(x0 = bar.length, y0 = length.means-length.se, x1 = bar.length, y1 =

length.means+length.se, length = 0.3, angle = 90, code = 3)

95

Fig. 11.9. Error bars

12. The comparison of more than two means:

analysis of variance

When we want to compare more than two means (e.g. more than two

groups), we cannot run several t-tests because it increases the "familywise

error rate", which is the error rate across tests conducted on the same

experimental data.

Example: if we want to compare three groups (1, 2 and 3) and we carry

out 3 t-tests (groups 1–2, 1–3 and 2–3), each with an arbitrary 5 % level of

significance, the probability of not making the Type I error is 95 % (= 1 - 0.05).

The three tests being independent, we can multiply the probabilities, so the

overall probability of no Type I errors is: 0.95 * 0.95 * 0.95 = 0.857, which

means that the probability of making at least one Type I error (to say that

there is a difference whereas there is not) is 1 - 0.857 = 0.143 or 14.3 %. So

96

the probability has increased from 5 % to 14.3 %. If we compare 5 groups

instead of 3, the familywise error rate is 22.6 % (= 1 - (0.95)5).

To overcome the problem of multiple comparisons, we need to run an

analysis of variance (ANOVA), which is an extension of the two groups'

comparison of a t-test but with a slightly different logic. If we want to compare

5 means, for example, we can compare each mean with another, which gives

you 10 possible 2-group comparisons, which is quite complicated. So, the

logic of the t-test cannot be directly transferred to the analysis of variance.

Instead the ANOVA compares variances: if the variance amongst the 5

means is greater than the random error variance (due to individual variability

for instance), then the means must be more spread out than we would have

explained by chance.

The statistic for ANOVA is the F ratio:

also:

If the variance amongst sample means is greater than the error

variance, then . In an ANOVA, we test whether F is significantly higher

than 1 or not.

Imagine we have a dataset of 78 data points, we advance a hypothesis that

these points in fact belong to 5 different groups (this is our hypothetical model).

So we arrange the data into 5 groups and run an ANOVA (Table 12.1).

Table 12.1

ANOVA

Source of

variation
Sum of Squares df

Mean

Square
F p-value

Between Groups 2.665 4 0.6663 8.423 <0.0001

Within Groups 5.775 73 0.0791

Total 8.44 77

97

Let's go through the figures in Table 12.1. First, the bottom row of the

table: total = – .

In our case, total SS = 8.44. If we were to plot our data to represent the

total SS, we would produce the graph shown in Fig. 12.1. So the total SS is

the squared sum of all the differences between each data points and the

grand mean. This is a quantification of the overall variability in our data. The

next step is to partition this variability: how big is variability between the

groups (explained by the model) and how big is the variability within the

groups (random/individual/remaining variability)?

Fig. 12.1. A scatter plot

According to our hypothesis our data can be split into 5 groups because,

for instance, the data come from 5 cell types, like in the graph in Fig. 12.2.

So we work out the mean for each cell type and we work out the

squared differences between each of the means and the grand mean (∑ ni

(Meani – Grand mean)2). In our example (the second row of the table):

between groups SS = 2.665 and, since we have 5 groups, there are 5 – 1 = 4 df

and the mean SS = 2.665/4 = 0.6663.

If you remember the formula of the variance (= SS / N - 1, with df = N - 1),

you can see that this value quantifies the variability between the groups'

means: it is the between-groups variance.

There is one row left in Table 12.1, the within-groups variability. It is the

variability within each of the five groups, so it corresponds to the difference

between each data point and its respective group mean: within the groups the

sum of squares = ∑ (xi - meani)
2 which in our case is equal to 5.775.

This value can also be obtained by doing 8.44 – 2.665 = 5.775, which is

logical since it is the amount of variability left from the total variability after the

98

variability explained by the model has been removed: in our example, the 5

groups' sizes are 12, 12, 17, 17 and 17 so df = (n – 1) = 73 (Fig. 12.2).

Fig. 12.2. Five scatter groups

So, the mean variability within the groups: SS = 5.775/73 = 0.0791. This

quantifies the remaining variability, the one not explained by the model, the

individual variability between each value and the mean of the group to which

it belongs according to the hypothesis. From this value one can obtain what is

often referred to as the pooled SD (= SQRT(MS (Residual or Within Group)).

When obtained in a pilot study, this value is used in the power analysis.

At this point, we can see that the amount of variability explained by our

model (0.6663) is far higher than the remaining one (0.0791).

We can work out the F-ratio: F = 0.6663 / 0.0791 = 8.423.

The level of significance of the test is calculated by taking into account

the F-ratio and the number of df (degree of freedom) for the numerator and

the denominator.

In our example, p < 0.0001, so the test is highly significant and we are

more than 99 % confident when we say that there is a difference between the

groups' means. This is an overall difference and even if we have an indication

from the graph, we cannot say which mean is significantly different from

which.

This is because the ANOVA is an "omnibus" test: it tells us that there is

(or not) an overall difference between our means but not exactly which means

are significantly different from which. This is why we apply a post-hoc test.

Post-hoc tests could be compared to t-tests but with a more stringent

Within group variability

Between group variability

99

approach, a lower significance threshold to correct for familywise error rate.

We will go through post-hoc tests in more details later.

Example. We want to find out if there is a significant difference in terms

of protein expression between 5 cell types.

First we import the dataset:

> protein<-read.csv("protein.expression.csv", header = T)

Then for ease of graphical representation we restructure it:

 protein.stack<-melt(protein) ## reshape2 package ##

 colnames(protein.stack)<-c("line","expression").

Than we get rid of the missing values:

protein.stack.clean <- protein.stack[!is.na(protein.stack$expression),]

Now we can plot the data, either as a scatterplot (Fig. 12.3)

Fig. 12.3. Scatterplots for groups

>stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical=

TRUE,method="jitter",las=1,ylab="Protein Expression", pch=16, col=rainbow(5))

100

> expression.means<-

+ tapply(protein.stack.clean$expression,protein.stack.clean$line,mean)

> loc.strip<-1:5

> segments(loc.strip-0.15,expression.means,loc.strip+0.15,

expression.means,

+ col="black", lwd=3)

or a boxplot (Fig. 12.4).

>boxplot(protein.stack.clean$expression~protein.stack.clean$line,col=rainbow(5)).

Fig. 12.4. Boxplots for groups

First we need to see whether the data meet the assumptions for a

parametric approach. Well, it does not look good: 2 out of 5 groups (C and D)

show a significant departure from normality (we cannot use the D'Agostino test

as R requires n 20). As for the homogeneity of variance, even before testing

it, a look at the scatter plots and boxplots tells us that there is no way the second

assumption is met. The data from groups C and D are quite skewed and a look

at the raw data shows more than a 10-fold jump between values of the same

group (e.g. in group A, value line 4 is 0.17 and value line 10 is 2.09). So,

>tapply(protein.stack.clean$expression,protein.stack.clean$line,stat.desc,des

c = F, basic = F, norm = T)) ## pastecs package ##.

101

A good idea would be to log-transform the data so that the spread is

more balanced and to check again on the assumptions. The variability seems

to be scale related: the higher the mean, the bigger the variability. This is a

typical case for log-transformation.

Speaking of log-transformation, the function beanplot() has a built-in

procedure to automatically determine whether a log transformation of the

response axis is appropriate or not, to get rid of it, we need: log = "". In our case,

since we are thinking log we might as well let the function choose (Fig. 12.5):

> beanplot(protein.stack.clean$expression~protein.stack.clean$line, ylab =

"Protein + Expression") ## beanplot package ##.

Figure 12.5. Beanplots for groups

We can actually check beforehand that a log transformation will

stabilize your data by changing your linear y-axis to a log y-axis. To do so,

with the stripchart for instance (Fig. 12.6), we go:

>stripchart(protein.stack.clean$expression~protein.stack.clean$line,vertical =

= TRUE,

+ method="jitter",las=1,ylab="Protein Expression", pch=16, col=rainbow(5),

+ log = "y")

expression.means<-

102

> tapply(protein.stack.clean$expression,protein.stack.clean$line,mean)

> loc.strip<-1:5

>segments(loc.strip-0.15,expression.means,loc.strip+0.15,expression.means,

+ col = "black", lwd = 3)

Fig. 12.6. Stripcharts for groups

It looks much better, so let's go for the actual log-transformation:

protein.stack.clean$log10.expression<-log10(protein.stack.clean$expression)

>tapply(protein.stack.clean$log10.expression,protein.stack.clean$line,stat.de

+sc,basic = F, norm = T, desc = F)

OK, the situation is getting better: the first assumption is met-ish and from

what we see when we plot the transformed data (boxplots) the homogeneity of

variance has improved a great deal (Fig. 12.7):

>boxplot(protein.stack.clean$log10.expression~protein.stack.clean$line,col =

rainbow(5)).

103

Fig. 12.7. Boxplots for groups after data transformation

One last thing before we run the ANOVA: we need to check for the

second assumption: the homogeneity of variance. To do so, we do what we

did before running the t-test: we run a Levene test:

> leveneTest(protein.stack.clean$log10.expression,protein.stack.clean$line,

+ center=mean) ## car package ##

Now that we have sorted out the data, we can run the ANOVA: to do so,

you go:

> anova.log.protein<-aov(log10.expression~line,data = protein.stack.clean)

+ summary(anova.log.protein).

The overall p-value is significant (p = 1.78e-05) so the next thing to do is

to choose a post-hoc test. There are 2 widely used: the Bonferroni test which is

quite conservative so we should only choose it when we are comparing no

more than 5 groups and the Tukey-test, which is more liberal. First let's try the

Bonferroni test. It is built into R:

> pairwise.t.test(protein.stack.clean$log10.expression,

+ protein.stack.clean$line, p.adj = "bonf").

104

Then Tukey:

TukeyHSD(anova.log.protein,"line")

Again, from Table 12.1 we can find out which pairwise comparison

reaches significance and which does not (Fig. 12.8):

>bar.expression<-barplot(expression.means, beside = TRUE, ylab = "Mean

+ expression", ylim = c(0,3), las = 1)

> expression.se <- tapply(protein.stack.clean$expression,

+ protein.stack.clean$line,std.error)

>arrows(x0 = bar.expression, y0 = expression.means-expression.se, x1 =

bar.expression,

> y1 = expression.means+expression.se, length = 0.2, angle = 90, code = 3)

Fig. 12.8. Pairwise comparison

If we want to find out about the relationship between two continuous

variables, we can run a correlation.

12.1. The correlation coefficient

A correlation is a measure of a linear relationship (which can be

expressed as straight-line graphs) between variables. The simplest way to find

105

out whether two variables are associated is to look at whether they covary. To

do so, we combine the variance of one variable with the variance of the other:

- -

A positive covariance indicates that as one variable deviates from the

mean, the other one deviates in the same direction, in other words if one

variable goes up, the other one goes up as well.

The problem with the covariance is that its value depends upon the

scale of measurement used, so we would not be able to compare covariance

between datasets unless both data are measures in the same units. To

standardize the covariance, it is divided by the SD of the 2 variables. It gives

us the most widely-used correlation coefficient: the Pearson product-moment

correlation coefficient "r":

- -

Of course, you don't need to remember that formula but it is important

that you understand what the correlation coefficient does: it measures the

magnitude and the direction of the relationship between two variables. It is

designed to range in value between 0.0 and 1.0 (Fig. 12.9).

Fig. 12.9. Positive and negative correlations

The two variables do not have to be measured in the same units but

they have to be proportional (meaning linearly related). Apart from r, there is

106

another important coefficient: the coefficient of determination R2: it gives the

proportion of variance in Y that can be explained by X, in percentage.

Finally, the assumptions for correlation (regression in general) are

pretty much the ones we have seen before:

Linearity: The relationship between X and the mean of Y is linear.

Homoscedasticity: The variance of the residual is the same for any

value of X.

Independence: Observations are independent of each other.

Normality: For any fixed value of X, Y is normally distributed.

When running a regression in general and a correlation in particular, we

need to check for problematic points. They can be:

Outliers: an outlier is defined as an observation that has a large residual.

In other words, the observed value for the point is very different from that

predicted by the regression model.

Leverage points: A leverage point is defined as an observation that

has a value of X that is far away from the mean of X.

Influential observations: An influential observation is defined as an

observation that changes the slope of the line. Thus, influential points have a

large influence on the fit of the model. One method to find influential points is

to compare the fit of the model with and without each observation.

The bottom line is that first we look at the outliers, once we have

identified them, we check the influence statistics and if one or more are "out

of line", we can then safely remove the value.

Example. Graphical data mining. Input data in R:

> exam.anxiety<-read.table("Exam Anxiety.dat", sep = "\t",header = T).

The first thing we are going to do is to plot the data (Fig. 12.10). We will

start with revising time vs anxiety levels.

> plot(exam.anxiety$Anxiety~exam.anxiety$Revise,col=exam.anxiety$Gender,

+ pch = 16)

> legend("topright", title = "Gender", inset = .05, c ("Female","Male"), horiz =

TRUE, + pch = 16, col = 1:2).

107

Fig. 12.10. Plotting the data

By looking at the graph, one can think that something is happening

here. To get a better idea we can add lines-of-best fit (Fig. 12.11) but to do

that we first need to fit the model as the lines-of-best fit's coefficients are one

of the outputs of the regression:

Fig. 12.11. Data with the best fit lines

108

fit.male<-lm(Anxiety~Revise, data = exam.anxiety[exam.anxiety$Gender ==

"Male",])

fit.female<-lm(Anxiety~Revise, data = exam.anxiety[exam.anxiety$Gender ==

"Female",])

> abline((fit.male), col = "red")

> abline((fit.female), col = "black")

Now, we want to quantify the strength of the relationship between our

two variables of interest but first we need to check on the data.

12.2. Outliers and influential cases

We might have noticed that one point, possibly two, is really far from the

others. So let's check out our data and keep an eye on our misbehaving

cases and in particular the boy (point Code 78) who spent two hours revising,

did not feel stressed about it (Anxiety score: 10) and managed a 100 % mark

in his exam. Then, in Fig. 12.12 we see:

> par(mfrow = c(2,2) plot(fit.male)

Figure 12.12. Identification of outliers for the boys

109

The first plot depicts residuals versus fitted values. Residuals are

measured as follows: residual = observed y – model-predicted y.

So the further the observed y from the one predicted by the model, the

poorer the prediction. The plot of residuals versus predicted values is useful

for checking the assumption of linearity and homoscedasticity. If the model

does not meet the linear model assumption, we would expect to see residuals

that are very large (a big positive value or a big negative value).

To assess the assumption of linearity we want to ensure that the

residuals are not too far away from 0.

To assess if the homoscedasticity assumption is met, we look to make

sure that there is no pattern in the residuals and that they are equally spread

around the y = 0 line. In our case, R identifies 3 points with high residuals,

one of which has a really high one: point 78.

The second plot (QQ-plot) evaluates the normality assumption. It compares

the residuals to "ideal" normal observations. We want our observations lie well

along the 45-degree line in the QQ-plot, which is the case here, except for point 78.

The third plot is a scale-location plot (square rooted standardized

residual vs predicted value). This is useful for checking the assumption of

homoscedasticity. In this particular plot we are checking to see if there is a

pattern in the residuals. In our case, things look OK. Point 78 is however

away from the others.

Finally, the fourth plot is of the "Cook's distance", which is a measure of

the influence of each observation on the regression coefficients. The Cook's

distance statistic is a measure, for each observation in turn, of the extent of

change in model estimates when that particular observation is omitted. Any

observation for which the Cook's distance is close to 1 or more (above 0.5), or

that is substantially larger than other Cook's distances (highly influential data

points), requires investigation. Once more, in our case, point 78 is of concern.

Outliers may or may not be influential points. As stated before, influential

outliers are of the greatest concern. They should never be disregarded. Careful

scrutiny of the original data may reveal an error in data entry that can be

corrected. They can be excluded from the final fitted model but they must be

noted in the final report or paper.

In our case, one points stands out in all 4 graphs: point 78, so we will

look at the correlation with and without this value.

Now we study the data for "female" (Fig. 12.13). We build data with the

aid of the function plot():

> plot(fit.female)

110

Fig. 12.13. Identification of outliers for the girls

For the girls, point 87 stands out though not as strikingly as point 78 for

the boys. And it is below the threshold to be identified as an influential case

(plos 4). We will however keep an eye on it (Fig 12.14). To get the output of

the analysis:

> summary(fit.male)

From this output we get 4 important pieces of information. First the

coefficients of the line of best fit: Intercept: 84.19 and slope: -0.53. So it goes:

Anxiety = 84.19-0.53*Revise.

We can also see that the relationship between the two variables is

highly significant: p < 2e-16. And finally R2 = 0.3568: the model explains

about 36 % of the variability observed in anxiety. We can get the coefficient of

correlation by calculating the square root of R2 or with the line below if we

want to look at the relationships between all variables.

cor(exam.anxiety[exam.anxiety$Gender == "Male", c("Exam", "Anxiety",

"Revise")])

111

For the females:

> summary(fit.female)

We get as a result: Anxiety = 91.94-0.82*Revise with p < 2e-16.

So a significant result again, with a higher intercept and a steeper slope

as expected. And for the correlations:

 > cor(exam.anxiety[exam.anxiety$Gender == "Female",

 > c("Exam","Anxiety","Revise")])

Now what happens if we remove point 78 from the males dataset and

rerun the analysis?

> fit.male2<-lm(Anxiety~Revise,

> data = exam.anxiety[exam.anxiety$Gender == "Male"&exam.anxiety$Code!

= 78,])

> summary(fit.male2)

We can notice that, without the influential outlier, the slope is steeper

but most importantly R2 jumps from 36 % to 65 % so a much better fit.

For the females:

> fit.female2<-lm(Anxiety~Revise,

> data = exam.anxiety[exam.anxiety$Gender == "Female"&exam.anxiety$Code!

= 87,])

> summary(fit.female2)

This model is better than the one with the outlier but the influence of

point 87 is not as big. Keeping or removing the value is more debatable.

>plot(exam.anxiety$Anxiety~exam.anxiety$Revise, col =

exam.anxiety$Gender,pch = 16)

> legend("topright", title = "Gender", inset = .05, c("Female","Male"),

horiz = TRUE, pch = 16, col = 1:2)

 > abline((fit.male), col = "red")

 > abline((fit.female), col = "black")

 > abline((fit.male2), col = "red", lty = 3)

 > abline((fit.female2), col = "black", lty = 3)

112

Fig. 12.14. Trends for boys and girls after the removal of the outliers

Conclusions

Almost all the basic features of R have been presented in these

guidelines. You will get to know how to solve the statistic problems with the

statistic software package R by following the R example step by step.

Unfortunately, there are more useful features, which have not been studied

and mentioned here because of the time limitation of the project. Also some R

functions were not introduced in detail due to the lack of space. You can get

detailed explanation of the functions with the help of the help() function. But

these introduced R functions are enough for the beginner to start using R for

the statistics analysis. You can get more information from the books and

publications listed in the bibliography.

113

Bibliography

1. Dalgaard Peter. Introductory Statistics with R. / P. Dalgaard. – 3rd

ed. – New York : McGraw-Hill, Inc., 1995. – 370 p.

2. Field A. Discovering statistics using R / A. Field, J. Miles, Z. Field. –

1st ed. – London : Sage, 2012. – 546 p.

3. Milton J. S. Introduction to Probability and Statistics / J. S. Milton,

J. C. Arnold. – 4th ed. – New York : McGraw-Hill, Inc., 2001. – 798 p.

4. Montgomery D. C. Design and Analysis of Experiments

/ D. C. Montgomery. – 3rd ed. – New York : John Wiley & Sons, Inc., 1991. –

432 p.

5. Verzani John. Simple R – Using R for Introductory Statistics [Electronic

resource] / J. Verzani. – Access mode : https://cran.r-project.org/doc/contrib

/Verzani-SimpleR.pdf.

114

НАВЧАЛЬНЕ ВИДАННЯ

ТЕОРІЯ ЙМОВІРНОСТЕЙ

ТА МАТЕМАТИЧНА СТАТИСТИКА

Методичні рекомендації

до лабораторних робіт

з використанням програмного середовища R

для студентів усіх спеціальностей

першого (бакалаврського) рівня

(англ. мовою)

Укладачі: Малярець Людмила Михайлівна

 Тижненко Олександр Григорович

Відповідальний за видання Л. М. Малярець

Редактор З. В. Зобова

Коректор З. В. Зобова

Розглянуто методологічні аспекти вивчення проблем ймовірностей та статистики

за допомогою програмного забезпечення R шляхом розв'язання набору стандартних задач.

Наведено декілька базових принципів використання R для розв'язання задач з теорії ймовір-

ностей та статистики на реальних прикладах. Такий підхід дозволить студентам, які мають

базові знання з математичного аналізу та математичних методів в економіці, швидко оволо-

діти методами розрахунків у R. Тому ці методичні рекомендації можуть бути використані

студентами економічних спеціальностей як основа для засвоєння курсів імовірностей

та статистики з використанням програмного середовища R.

Рекомендовано для студентів усіх спеціальностей першого (бакалаврського) рівня.

План 2018 р. Поз. № 36 ЕВ. Обсяг 114 с.

Видавець і виготовлювач – ХНЕУ ім. С. Кузнеця, 61166, м. Харків, просп. Науки, 9-А

Свідоцтво про внесення суб'єкта видавничої справи до Державного реєстру

ДК № 4853 від 20.02.2015 р.

