
Bulletin of the Transilvania University of Braşov  
Series V: Economic Sciences • Vol. 8 (57) No. 2 - 2015 
 

 
The generalized approach to multidimensional scaling 
 

Ludmila МАLYARETZ1, Oleksandr DOROKHOV1, 
Vladimir PONOMARENKO1 

 
 
Abstract:  Often in practice of solving economic problems there is a need to analyse objects 
with properties that are measured in different non-metric scales. Most popular mathematical 
approach of processing that properties is multidimensional scaling method. There are metric 
and non-metric scaling. The most reasonable of them is the Torgerson metric method, but it 
is supposed to have metric scale input variables. The paper proposes a modified method of 
factor analysis, which allows non-metric data as input. The paper presents arguments that 
the proposed modification is the improvement of the method of multidimensional scaling. The 
proposed method is less time-consuming than the Torgerson method, but is mathematically 
justified as well. So the mathematical explanation of the generalized multidimensional 
scaling method has been described. This approach broadens the range of possible ways to 
describe objects in economics by means of factors measured on different scales. 
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1. Introduction 

 
In conditions of indeterminacy, objects in economics are described by means of non-
metric scales. The further research of these objects requires the use of mathematical 
methods. It leads to certain problems caused by the limited choice of methods that 
allow ordinal numbers or nominations as the original data (Маlyaretz 2010, 
Ponomarenko 2007). The multidimensional scaling is the method that makes it 
possible to perform the analysis of non-metric factors. The multidimensional scaling 
can be metric and non-metric (Egorshin 2007).  

Torgerson’s scaling is the most valid of them. The elements of this method 
are also used in other methods of multidimensional scaling (Ponomarenko 2009). 
The existing algorithms of the multidimensional scaling method have a lot of 
drawbacks: the heuristic validity, laboriousness, the limit of two stimuli, the visual 
presentation on a plane only etc (Маlyaretz 2007, Manly 2004). 
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The purpose of multidimensional scaling correlates with factor and cluster 
analysis. Like with the principal components method, the goal of multidimensional 
scaling lies in the construction of reduced metric space with generalized coordinates.  

The principal components method is mathematically valid, and any deviations 
from it meant for non-metric data generalization can only hinder the results of the 
analysis (Davison 1988, Davison 2009, Stern 2004, Härdle 2007). Thus, the 
principal components method can be considered a standard for comparison with any 
other multidimensional scaling method, if data allows using both methods.  
 
 
2. First variant of the principal components method 

 
It is known that standardization is used in the principal components method, and any 
other variants can only worsen the exhaustion principle (Egorshin 1998, Маlyaretz 
2006).  

Let consider the matrix of initial metric data with size n×m  (n – number of 
objects or observations, m – number of attributes of the objects). For it may be 
calculated standardized data matrix Z with the same dimensions n×m and Z′- the 
transposed matrix with matrix size m× n. 

The iF , mi ,1=  components are linear combinations of standardized factors  

jZ , mj ,1=  and coefficients iju , which are the eigenvectors of the correlation 

matrix between factors 
n
ZZR
′

= :  

mimiii ZuZuZuF +++= ...2211 , 
 

where n  - is the number of observations (objects);   
m - the number of factors;   
R - a matrix the size of mm× ;    
U - matrix with dimensions mm×  of eigenvectors of the correlation matrix, 

which are defined by the matrix equation ( )λUDRU = , where ( )λD is a diagonal 
matrix with eigenvalues iλ  of the correlation matrix R  (Маlyaretz, 2010). 

Unlike the initial standardized factors jZ , the dispersions of the components  

iF  are different and are the eigenvalues iλ . It is known that the correlation matrix is 
positively defined, meaning that its eigenvalues are nonnegative and in total are 
equal to the numbers of factors m.  

The first components are more important than any separate factor, their 
dispersions (eigenvalues  iλ  ) are greater than 1. On the contrary, the rest of the 
components almost don’t vary, their dispersions (eigenvalues) are close to zero. We 
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can discard these components and get a limited space of the principal components, 
the number of which is less than the number of the initial factors mk ≤ .  

If we leave the first k columns, corresponding to the main components, in the 
matrix U, than we can calculate the values of these components with the matrix 
product of F=ZUT (the dimensions of the matrixes are: ,, mnkn ×× km ×  and UT  is 
corresponding truncated matrix). It is known that the eigenvectors of the correlation 
matrix are mutually orthogonal. Hence, they are normalized so that the norms of the 
vectors were equal 1. In the factor analysis, the eigenvectors are normalized so that 
their norms were equal the eigenvalues iλ  . The matrix of vectors normalized in 
such a fashion is called the matrix of factor stresses iii UA λ=  and is used to classify 
factors in such groups. 
 
 
3. Second variant of the principal components method 
 
There is another variation of the principal components method, which due to the 
number of mathematical operations is considerably more labor-consuming than the 
main one stated above, but this modification makes it possible to synthesize the 
principal components method for other kinds of data, e.g. for non-metric data.  

According to the other variant of the method, after the initial standardization 
of the factors it is necessary to build a correlation matrix between objects 

m
ZZRO

′
= , to find its eigenvectors iV  and to normalize them so that the new 

norms were equal to the eigenvalues of the correlation matrix RO  , e.g. we must 
calculate its matrix of factor stresses. The dimensions of the matrix RO  are nn × , 
which is considerably greater than  mm×  of the correlation matrix  R  between the 
factors. 

To prove that the non-nil eigenvalues for the matrixes ZZ ′ and ZZ ′ are same, 
we use the singular decomposition of a random rectangular matrix (Forsythe 1977). 

The singular figures iσ of the rectangular matrix Z with dimensions mn ×  are 
defined by the following system of matrix equations: 

 
( )
( )⎩

⎨
⎧

∆′=′
∆=

σ
σ

UVZ
VZU

 

 
where U - is a square matrix with dimensions mm× ; 

V - is a square matrix with dimensions nn × ; 
( )σ∆  - a rectangular matrix with dimensions mn × , in which only the 
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elements of the main diagonal, where the singular figures iσ  are, are other than 
zero. 

We multiply the first matrix equation of the system of the singular figures 
calculation by Z ′  and consider the second matrix equation of the system: 

 
( ) ( ) ( )2σσσ UDUVZZUZ =∆′=∆′=′  

 
From the matrix equation ( ) ( )λUDUZZ =′  we see that ( )2

ii σλ = are 
eigenvalues, and iU are eigenvectors of the symmetrically positive defined matrix 

ZZ ′ . Therefore, all the eigenvalues iλ  are actual nonnegative, and the eigenvectors 

iU  are mutually orthogonal. 
We multiply the second matrix equation of the system for the singular figures 

calculation on the left by Z  and consider the first matrix equation of the system: 
  

( ) ( ) ( ) ( )2* σσσσ VDVUZZVZ =∆′∆=∆′=′  
 

where  ( ) ( ) ( )2* σσσ D=∆′∆  -  is a diagonal matrix with dimensions nn ×  , on the 
main diagonal of which there is m   squares of singular figures, and the other 
elements equal zero. 

From the matrix equation  ( ) ( )2* σVDVZZ =′   we see that  ( )2
ii σλ =  are non-

nil eigenvalues, and iV are the eigenvectors of the symmetrically positive defined 
matrix ZZ ′  . Therefore, all the eigenvalues iλ  are actual nonnegative, and the 
eigenvectors iV  are mutually orthogonal. 

Thus, it is proven that non-nil positive values of matrixes ZZZZ ′′ , are similar 
and equal the squares of the singular figures. For the correlation matrix between the 

factors  
n
ZZR
′

=  the eigenvalues will be n   times less and in total will equal m ; for 

the correlation matrix between the objects 
m
ZZRO

′
=  the eigenvalues will be m   

times less and in total will equal  n , the eigenvectors will stay the same. 
Now we can formulate the most important conclusion that the matrix of factor 

stresses for the matrix RO  is in fact the matrix of the values of the main factors 
ZUF = . Indeed, form the first matrix equation of the system we get  

( )σ∆== VZUF  , and   iii VF λ=  - the columns of the matrix of factor stresses 
for ZZ ′ ~ RO  . Therefore, we have shown equivalence of the calculation results for 
both variants of the principal components method.  
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However, the second universal variant is much more labor-consuming than the 
first one, but it may be used for non-metric data. For ordinal data some prefer the 
cumbersome iterative Kruskal-Wish method with the non-metric series of Lingoes 
and Guttman (Terekhina, 1986). But there is no theoretical foundation for this 
procedure, furthermore this method requires a great amount of calculations but also 
is the heuristic. 
 
 
4. Proving of the generalized approach of multidimensional scaling  
 
The Torgerson method in the metric multi-dimensional scaling is congruent almost 
completely with the other variants of the principal components method, but, form 
the calculating point of view, those methods are not that similar (Davison 1988).  

In the Torgerson method, after the matrix of metric data X  with dimensions  
mn ×  we build a matrix of squares of Euclidean distances  2D  with dimensions 
nn × . Initially, the values of all the factors must be normalized. 

If we take the dispersions of the factors as the norms, the elements of the 
matrix  2D  will be found through the formula: 

( )∑ −=
=

m

k
jkikij zzd

1

22
 

where jkik zz ,  are the values of the standardized factor kZ  for the objects ji,  
(additional centering of the factors doesn’t change the distance between the objects). 

For the matrix  2D  we find the averages of the rows  2
•id  and the columns   

2
jd• and the mutual average  2

••d ; then by means of double centering we turn to the 

matrix  *D , the elements of which are defined through the formula: 

( )2222*

2
1

•••• +−−−= ddddd jiijij  

Now let us prove that the matrix *D  is the matrix ZZ ′ .   
We express the averages 222 ,, •••• ddd ji  through the initial data 

(standardized). We transform the data by the rows of the matrix 2
•id : 
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where with 
2
kz• the average squares of standardized values of each factor are 

designated: 

∑=
=

•
n

j
jkk z

n
z

1

22 1
; the last item in the formula 2

•id  equals zero 0
1 1

=∑ ∑
= =

m

k

n

j
jkik zz  

since for standardized factors ∑ =
=

n

j
jkz

1
0 . 

Similarly the averages of the columns 2
jd• are transformed. 

( )

∑ ∑ −+=

∑ =∑ ∑ ∑ ∑−∑ +=

∑ =∑ −=∑=
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The mutual average 
2
••d can be found through one of the following 

equivalent formulas: 

∑∑ ==∑∑=
=

•
=

•
==

••
n

j
j

n

i
i

n

i
ij

n

i
d

n
d

n
d

n
d

1

2

1

2

1

2

12
2 111

 

The transformation of any of these formulas leads to the following expression: 

∑=∑+∑=
=

•
=

•
=

•••
m

k
k

m

k
k

m

k
k zzzd

1

2

1

2

1

22 2  

Finally we transform the elements of the matrix *D (after double centering of 

the matrix 2D ): 
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Therefore, it turned out that the elements of the matrix *D are equal to scalar 
products of the rows of the matrix Z  (the matrix of standardized factors). To put it 

simple, the matrix *D can be presented as a matrix product of mutually transposed 
matrixes: ZZD ′=* . The further computations repeat the steps of the universal 
method (the second variant of the principal components method).  

For the matrix *D  we find eigenvalues that correspond to the eigenvectors 

iV , which are normalized so that their norms would be equal to the eigenvalues. 
Several first normalized vectors (usually the first two) are taken for the limited 
vector space. This issue has already been cleared. It is necessary to leave enough 
generalized coordinates that the sum of their eigenvalues wouldn’t be less than 70% 
of mn ; in addition, all these eigenvalues must be no less than m . 

In scientific sources it is noted that with other factors normalization or other 
measure of distances, the matrix *D  loses positive definiteness, and negative 
eigenvalues appear (Mukhopadhyay, 2008). It is considered acceptable, if these 
negative values are low. We should use the expert opinion on the admissibility of 
minor abnormalities. By the way, the Kruskal-Wish method also infringes upon the 
condition of the positive definiteness of the similarity matrixes.   

  
 
4. Conclusions 

 
As the initial matrix in the multidimensional scaling method for metric factors it is 
recommended to use the correlation matrix, for ordinal factors – Spearman’s rank 
correlation matrix, for nominal data – the similarity matrix based on Hamming’s 
measure.  

As the result of the calculations of the generalized method of multidimensional 
scaling we get a new space with new coordinates, where the analysis of the objects can 
be continued with the methods of cluster analysis. Thereby, we have proven the 
foundation of the generalized method of multidimensional scaling for the analysis of 
objects in economics, originally described in the space of different factors, particularly 
nominal ones. 
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